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Preface
This book is for individuals who would like to help
other individuals to recover their control of

movement. of the book
Neuromuscular rehabilitation is straightforward
and uncomplicated: we all do it naturally all of the
time. Throughout our lives we learn new movement
patterns or recover our control after an injury. The
means by which we achieve these changes are no
different to neuromuscular rehabilitation. They all
rely on the same neurophysiological, psychological
and behavioural processes.

Neuromuscular rehabilitation integrates several
branches of knowledge. They include medical,
neurophysiological, psychological-behavioural and
motor-control sciences as well as manual and physi-
cal therapy fields. The enormity of available in-
formation from these diverse sources can be
overwhelming, in particular when trying to translate
this information into a practical clinical approach.
The main aim in writing this book was to collate
and integrate all this information and present it in
a practical, user-friendly format.

Over the years of working in clinics I have
observed that neuromuscular rehabilitation of a per-
son after joint surgery or musculoskeletal injury
bears close resemblance to the clinical management
of a stroke patient. It was clear to me that there is a
unifying model for neuromuscular rehabilitation.
However, it took a good decade and a half to put
it together into a coherent and cohesive model,
and one which is still being tinkered with. This uni-
fied model for neuromuscular rehabilitation is
described throughout the book.

The information in the book is derived from sev-
eral sources. It is a combination of my own research
in the neurophysiology of manual therapy, the vast
research in all the fields discussed above, my clinical
experience of 23 years and my experience of teach-
ing neuromuscular rehabilitation for the last 15 years.
These experiences have made me aware of the aca-
demic and practical needs of the practitioners in this
area. This is reflected in the contents of this book:
it aims to bridge the gap between science and the
practice of neuromuscular rehabilitation.
The contents and organization

The book starts by identifying the main unifying
model/principles for motor rehabilitation (Ch. 1),
including the importance of a functional approach,
skill- and ability-level rehabilitation and the code
for neuromuscular adaptation. The following
chapters discuss several areas that are relevant to
neuromuscular rehabilitation. They include how
movement is organized (motor control, Ch. 2) and
how it is constructed from underlying control com-
ponents called motor abilities (Ch. 3). These abil-
ities are affected in various neuromuscular and
musculoskeletal conditions and may, therefore,
become the target of rehabilitation. Also, proprio-
ception plays an important role in movement
control and is often affected by musculoskeletal
and central nervous system damage (Ch. 4).

The next important issue in rehabilitation is how
to sustain the motor recovery in the long term.
Chapter 5 discusses motor learning and adaptation
principles and how to integrate them into the clini-
cal management. The consequences of learning,
neurophysiological/neuromuscular plasticity and
adaptation are discussed in Chapter 6.

Inmusculoskeletal injuries themotor system reorga-
nizes movement to prevent further damage (Ch. 7).
The motor manifestation of this reorganization will be
discussed as well as the indications for introducing
neuromuscular rehabilitation after injury identified.

Once an individual acquires an injury, their
beliefs, attitudes and behaviour may have important
implications for recovery. Furthermore, the way a
person uses their body or schedules their activities
during the day may put them at risk for injury.
These cognitive and behavioural factors are dis-
cussed in Chapter 8. This theme is continued in
Chapter 9, examining non-traumatic pain conditions
such as trapezius and jaw myalgia, and chronic neck
pain. In this group of conditions the individual
develops localized and debilitating pain without a
history of tissue trauma.



Preface
Chapter 10 explores the principles of functional
movement, motor control and learning/adaptation,
and their use in rehabilitating patients with central
nervous system damage.

Chapter 11 describes how to develop a rehabili-
tation programme using the key principles identi-
fied in the book. Chapter 12 describes some of
the assessments and challenges of motor abilities
and similarly for proprioception in Chapter 13. A
summary of the book can be found in Chapter 14.

The book is supplemented by a DVD demon-
strating some of the assessments and challenges of
the motor abilities and their use in clinic. The
viii
movement challenges described in the book and
DVD are derived from several sources. Some are
research-based, others I have developed and used
in clinic. Over many years of teaching I have
observed professionals from different disciplines
and their approach in rehabilitating movement con-
trol. Their wealth of experience and knowledge is
part of this library of movement rehabilitation. It
is a source book that aims to provide ideas and not
recipes or treatment protocols for rehabilitation.

I hope you will find it useful.

London 2010 Prof Eyal Lederman
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Introduction
This book explores how manual and physical thera-
pists can help individuals to recover and optimize
their control of movement. Musculoskeletal injury,
pain experiences and central nervous system damage
are all associated with diverse neuromuscular and
movement control changes. The aim of this book is
to provide the theoretical and practical basis for
neuromuscular rehabilitation for these conditions.

This book is intended for manual and physical
therapists of all disciplines (physiotherapists, osteo-
paths, chiropractors, sports massage therapists, etc.)
who work with patients whose conditions involve
the neuromuscular system. The book will also be
useful for personal trainers, Alexander method tea-
chers, Pilates instructors, postural integration teachers,
Rolfing practitioners, sports trainers and individuals
who experience losses in movement control.

A functional approach
in rehabilitation

A functional approach in rehabilitation is the key
concept underpinning the management described
in this book.

Functional movement is defined here as the
unique movement repertoire of an individual. A por-
tion of this repertoire involves the movement beha-
viour associated with daily needs and demands, such
as feeding, grooming, going places, etc. (general
skills). Some movement behaviour may be partly
shared with others whilst some may be unique to
particular individuals; examples include physical
hobbies, sports and occupational activities (special
skills). For one person their functional repertoire
may include playing tennis, for another standing on
their head (yoga) or playing the piano and so on.
Once a person learns a movement or a new skill
it becomes a part of their movement repertoire
and, therefore, their behaviour. Movement which
is outside the normal repertoire of an individual will
be termed here as extra-functional (Fig. 1.1).

Functional rehabilitation is defined here as the
process of helping a person to recover their movement
capacity by using their own movement repertoire
(whenever possible). Hence, for a person who has
motor losses at the knee and is unable to walk or
run, the rehabilitation will be in walking, then run-
ning, jumping and stair-climbing, etc. If this person
plays tennis, this activity will also be used in the
rehabilitation programme.

However, rehabilitation is likely to be less effective
if the remedialmovement patterns or tasks are outside
the individual’s experience (extra-functional). For
example, it would be less helpful for a tennis player
with a leg injury to be given rehabilitative exercise such
as football, or leg presses in the gym or leg exercise
lying on the floor (Ch. 2). For this particular patient,
rehabilitation that incorporates tennis tasks is more
likely to be useful. For a person who is suffering from
lower back pain and enjoys yoga, a functional rehabili-
tation would consist of the shared functional activities
(general skills), but may also include some of the
upright postures from yoga (special skills). A less suit-
able rehabilitation approachwould be to prescribe ten-
nis to this individual. This may seem obvious;
however, movement rehabilitation often prescribes
extra-functional tasks such as core stability training
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General skills
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Special skills

Fig. 1.1 � Functional movement represents the movement repertoire of
the individual. It includes all the general activities and special skills. Extra-
functional movement comprises all activities outside the individual’s
movement experiences.
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on the floor, bracing the trunk or strength trainingwith
equipment. The question is how effective are these
activities in recovering functional movement?

The introduction of extra-functional activities
during rehabilitation raises some problems. Extra-
functional activity or exercise requires learning a
new task at a time when the patient is experiencing
pain and/or loss of movement ability. This might
not be the best time to enter a new exercise regime.
Learning requires set-aside time, intense mental
focus and physical effort. Often it means the patient
has to be dependent on others for instructions and
guidance during the training. A functional approach
which aims to use the patient’s own movement
resources does not require additional learning; the
cognitive demands are less taxing and do not require
protracted training. Also the set-aside time for prac-
tice is more manageable for the patient. This form
of rehabilitation seldom relies on any specialized
exercise equipment and the remedial movement
challenges are integrated into the person’s daily activ-
ities. They can be practised anywhere and at any
time. A functional approach is easy to apply and it
empowers the patient to self-care.

There are exceptions to the functional approach
in rehabilitation. There are circumstances where
the patients will require specific exercises for par-
ticular motor losses; challenges which may not be
provided by their functional repertoire. There are
also situations where the individual is physically
unable to perform functional activities. When and
why the rehabilitation should stray from this model
will be discussed throughout this book.
2

Rehabilitation levels: skill and
ability level rehabilitation

Movement rehabilitation and motor normalization
following injury occurs naturally for most indivi-
duals. Following injury most individuals will take
physical actions that will support their spontaneous
and unaided recovery. This would happen without
any special knowledge or understanding of the
underlying physiological principles underpinning
their recovery. In this form of rehabilitation the
individual is attempting to, partially or fully, exe-
cute the movement that has been lost. Attempting
to walk becomes the rehabilitation for the person
who lost the ability to walk. Similarly, if an individ-
ual with an arm injury is unable to reach; their
repeated attempts in that pattern would often be
their rehabilitation. The focus in this form of move-
ment recovery is on the overall skill of performing
the particular movement. This will be loosely
referred to as skill rehabilitation (Ch. 9).

However, this approach does not always lead to
the intended results. Individuals who are in pain or
have motor losses may develop movement patterns
that circumvent their losses. A patient may present
with walking difficulties due to losses in the control
of balance and coordination. One would imagine
that by encouraging the patient to increase their
walking, “walking would train balance and coordina-
tion during walking”. However, what may happen is
that the patient will get better at using their com-
pensatory pattern; walking slowly, using wider gait,
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shorter steps, rather than truly improving their con-
trol of balance and coordination during walking.

Balance and coordination are part of several
control building blocks that make up skilled move-
ment. These building blocks are called sensory motor
abilities. A therapeutic approach that targets the
various motor abilities will be termed in this text
as re-abilitation. At this level of rehabilitation the
aim is to recover control losses associated with par-
ticular abilities. Hence, in the walking scenario
described above, the rehabilitation would aim to
challenge balance and coordination in dynamic and
upright postures (Ch. 2).

Skill rehabilitation and re-abilitation are both
clinically important and are often used in combina-
tion. However, there may be a shift of focus
towards one of these particular approaches depend-
ing on the individual’s condition and their phase of
recovery (Ch. 9).

The code for neuromuscular
adaptation

Neuromuscular rehabilitation is a straightforward
process – anyone can do it. Indeed, we all do it all
the time. Every day we take actions that result
in movement and behaviour changes; we can self-
modify our motor control. Furthermore, the neuro-
muscular system has the capacity for self-recovery
and to reorganize in response to injury. It means
that within our behaviour there are certain elements
that facilitate the recovery of movement control.

In functional rehabilitation we identify five such
elements that optimize neuromuscular adaptation:
cognition, being active, feedback, repetition and
similarity (Ch. 5). Hence, in order to learn a new task,
modify our behaviour or help our system recover we
need to be aware of what we are doing (cognition)
and we have to actively perform the action that we
aim to recover (being active). In order to correct our
movement we rely on internal information from our
senses or depend on guidance by someone (feedback)
and we have to practise the task many times (repeti-
tion). Furthermore, the practice has to closely resem-
ble the movement we aim to recover (similarity).
Hence, to play the piano a person needs to practise
the piano. However, strength training with finger
weights or practising push-ups is unlikely to benefit
playing the piano. The practice has to be task-specific.
The recovery of motor control can be facilitated
by introducing the adaptive code element into the
rehabilitation programme. It will promote a func-
tional recovery that is more likely to benefit the
patient in their daily activities. The results are more
likely to be maintained in the long-term and could
help to reduce the overall duration of the treatment
programme.
Developing a neuromuscular
rehabilitation programme

Much of the rehabilitation promoted in this book is
the marrying of the three concepts discussed so far:
1.
 The focus on functional movement
2.
 The principle of skill/ability level rehabilitation
3.
 The code for motor adaptation (Ch. 9).

Through a simple three-step process the therapist
decides which level of rehabilitation will be used
and applies the motor adaptation elements to the
treatment programme. Many of the remedial chal-
lenges are selected from the patient’s own move-
ment repertoire. It really is that simple.

The beauty of it all is that these principles can be
applied to any condition in which the neuromuscu-
lar system is implicated:

Conditions with an intact
motor system

• Neuromuscular changes associated with
musculoskeletal injuries, sports injuries, post
surgery, back pain and other musculoskeletal pain
conditions (Ch. 7)

• Conditions where certain behaviours impede
recovery or may lead to injury or pain (Ch. 8)

• Non-traumatic pain conditions, such as trapezius
myalgia, chronic neck pain and painful jaw (Ch. 9).

Conditions where there is damage
to the central nervous system

• Stroke, head trauma and post central nervous
system (CNS) surgery and all the degenerative
conditions (Ch. 10).
3
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The main difference in managing these conditions
is in the magnitude of losses, the duration of recov-
ery and the extent of potential recovery.

Summary points

• Neuromuscular rehabilitation aims to help the
individual recover their movement control.

• Functional movement is the movement
repertoire of an individual.

• Functional movement is individual-specific.
4

• Functional rehabilitation uses the patient’s own
movement repertoire to help him/her to recover
their movement losses.

• The rehabilitation promoted in this book has
three basic recurring concepts:
1.
 It aims to be functional.
2.
 It uses the skill/ability level rehabilitation
concept.
3.
 It uses the learning/adaptation code to
optimize motor control changes.



2
Motor control
The motor system organizes and controls skeletal
muscle activation during movement, posture and
the musculoskeletal aspect of behaviour and expres-
sion. The motor system spans the whole of the cen-
tral nervous system (CNS). It is not a discrete
functional or anatomical entity.

This chapter will examine how movement is
organized and the implications it has for neuromus-
cular rehabilitation.
The organization for
movement

Imagine an action such as reaching for a cup. For
that action we need to collect information from all
our senses about our body and the environment.1–3

We can than select the most suitable response to
get hold of the cup. Once a decision has been made
a motor command ensues,2 muscles are activated
and a reaching movement is the outcome. Some ele-
ments of the motor process will be at conscious
level, “that we are reaching for the cup”, while a
larger proportion will remain at a subconscious
level,4 such as the fine postural adjustments that
precede the action. Hence, any movement has con-
scious and reflexive elements and identifiable stages
(Fig. 2.1):

• Integration stage

• Motor stage

• Sensory stage.

These stages should be viewed as a process with
multiple sub-events rather than separate entities.5
The integration stage

Once an individual has decided to take an action the
role of the integration stage is to prepare the neuro-
muscular system for the execution of the associated
movement. Within the integration stage there are
two processes that have important implications for
neuromuscular rehabilitation. The first is how
movement is encoded by the motor centres for
future use and the second is how movement errors
are identified.

Motor programmes and movement
parameters

Ourmovement repertoire is storedwithin the central
nervous system as motor programmes. They are not
centre-specific and seem to be stored throughout
the central nervous system, including the spinal
cord.6–10

The motor programmes are believed to be
generalized schemes containing information about
the movement sequences and their goals rather than
specific muscle sequences.2 Writing is an example
of such a generalized scheme. A word can be writ-
ten in many different ways; it can be written fast
or slow, from different angles, in larger or small
amplitudes, whilst sitting or standing, or even in
completely new, unrehearsed situations. It can be
written with the non-dominant hand, with each foot
and even with the pen held between the teeth.
A mild stroke patient once demonstrated to me
how she could write beautiful calligraphy with the
affected arm/side. She would hold the pen in the
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Fig. 2.1 � The motor system as a process. The
inner circle represents processes occurring at
reflexive, sub-awareness level.
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hand; stiffen her arm and write by moving her
whole body. In these writing examples, the schema
for writing is executable by any part of the body
because it is not specific to any particular muscle
group.11–15

Once a task has been learned the movement
sequences become more robust to change, e.g. a
person’s handwriting is unique and will remain
largely unchanged through life. However, certain
factors such as the force, speed, range/size of the
writing can be changed at any time.2 By modifying
these movement parameters any task can be per-
formed with infinite variations.11–15

The movement parameters have an important
role in neuromuscular rehabilitation. It has been
demonstrated that in musculoskeletal injury or in
pain conditions the motor system “narrows” these
movement parameters. This reorganization of move-
ment control is a protection strategy which serves to
alleviate some of the stresses imposed on the dam-
aged tissues (Ch. 7). For example, a person
suffering from lower back pain may demonstrate
trunk muscle force losses,21–23 reduced movement
speed,23–26 reduced endurance,16–20 changes in the
normal timing and duration of synergists in the
trunk muscles,27–37 changes in coordinated move-
ment of the pelvis and thorax,24,25 reduced postural
6

stability31,34,38–40 and loss of the ability to respond
to sudden postural changes.28–36,41 Hence, a person
with back pain will often display a posture and gait
which is different from their usual patterns. The
normal schemes for walking are still preserved, but
the movement parameters have changed. This
motor reorganization will also influence certain
building-blocks of movement called motor abilities
(see Ch. 3).
The comparator system

Imagine that while lifting the cup it slipped from
your hand resulting in immediate reflexive grasp.
The error detection is carried out by the comparator
system.

Once a movement pattern has been selected the
efferent commands are transmitted to the spinal
motor centres to initiate muscle activity. At the
same time a copy of this information (efferent or
efference copy) is transmitted internally to be pro-
cessed by the comparator system (Fig. 2.2). Here,
the information from the efference copy and the
information from the sensory inputs are matched
against the expected outcome of the action.2,42–45

Any mismatch will result in motor reorganization
and correction of the movement.
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Fig. 2.2 � The comparator system identifies movement
irregularities/errors.

Fig. 2.3 � Dynamic tensional fields produce movement.
These fields change continuously on a moment-to-moment
basis and are unlikely to repeat themselves.
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The comparator system reduces the processing
demands placed on the CNS by selectively drawing
attention to movement, but only when there is a
change from the norm. As long as the information
is similar it will remain at a low priority within the
overall motor processes. Hence, many of our famil-
iar daily activities (e.g. walking) remain below con-
sciousness until we make a mistake (e.g. tripping).

When learning a new task it will be acquired
through a process of making errors and their correc-
tion. This error detection is carried out by the com-
parator system. This detection process is only
functional during “active” rather than passive move-
ment. It implies that motor learning will be more
effective in rehabilitation approaches where the
person is active and concurrently correcting their
movement, in comparison to passive approaches.

The comparator system also plays a role in propri-
oception.Whenwemove our limbs there is a sense of
their weight and the effort that is required to move
them. This sense of effort is believed to be derived
internally by central processes (comparator) and
not from the proprioceptors.2,43,45–47 It has been
hypothesized that during motor development we
learn to associate the effort with movement sensa-
tions (proprioception). Eventually, the sense of effort
becomes a proprioceptive signal in its own right.48

The sense of effort, as a source of feedback, is
only present during active rather than passive move-
ment. Hence, during active movement proprio-
ceptive acuity increases, compared to the same
movement being performed passively. It implies
that more effective proprioceptive rehabilitation
can be achieved by active rather than passive
movement approaches. The full clinical implication
of this phenomenon is further discussed in Chapters
4 and 13.

The motor stage

The motor stage is the culmination of the selection
of movement schemes and the transmission of these
efferent commands to the spinal motor centres.

One way to visualize the motor output is to imag-
ine a person wearing an electromyographic (EMG)
body-suit. This suit would have numerous EMG
electrodes that could record the motor activity from
every single muscle or, even better, from every
motor unit in the body. Furthermore, imagine that
the suit is covered by minute lights that would rep-
resent the intensity of the underlying motor events.
Areas with high motor activity will be represented
by brighter light and vice-versa. If this was possible,
we would probably see a psychedelic light show
throughout the body, with different areas lighting
at different intensities – the motor output is a
whole body event. These patterns would change
on a moment-to-moment basis as the person moves
or even while they are still.49

The EMG suit would probably demonstrate that
movement is achieved by shifting tension gradients
throughout the body (Fig. 2.3). In order to move
7
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the arm to the mouth, tension develops in the ante-
rior aspect of the upper limb, while on the opposite
side the tension in the limb diminishes. The way to
imagine it is as broad and dynamic tensional fields,
rather than separate and individual muscles. These
fields are widespread and are continuously varying
in their intensities. Interestingly, most of the pro-
prioceptors in our body are tension receptors
(except for the skin, which has pressure receptors).
It seems that during movement the nervous system
“sees” areas of varying tensions rather than individ-
ual tendons, joint capsules or muscles.
8

Clinical note
The concept of tensional field can help us to make
an important clinical shortcut: there is no need to
know the complex and exact anatomy of muscles
for effective neuromuscular rehabilitation. The focus
is on movement capacity and not on individual
muscles.
Movement direction

Group 1
of movers

(more tension)

Group 2
antagonists

(less tension)

Group A
stabilisers

(co-tension with
group B)

Group B
stabilisers

(co-tension with
group A)

Areas of
shared activity

Areas of
shared activity

A

Fig. 2.4 � A, “Simplified complexity” in tensional fields.
Shaded circles represent tension created by muscle groups.

(Continued)
The complexity of recruitment

The recruitment of muscle is composed of highly
complex patterns. Imagine a simple movement such
as turning the head. Some muscles will be recruited
to produce the tensional field necessary to rotate
the head; meanwhile all the antagonistic muscles
will reduce their tensional field. Concurrently, mus-
cles bilaterally will increase in co-tension to prevent
the head from falling sideways (Fig. 2.4a). These
muscles have to dynamically stabilize the movement
while sharing some element in the execution of the
turning motion. As the head moves beyond the cen-
tre of its gravity the action of these muscles will
reverse. The antagonists develop low-level eccentric
tension to counter the weight of the head; the orig-
inal movers will drop in tension and so on. If we
were to describe every muscle activity in this simple
movement it would probably fill the whole of this
book and beyond. This complexity is depicted in
Figure 2.4b.

It has been demonstrated that every task or
movement we perform will never exactly repeat
itself.50–55 Throughout life “every breath you take,
every step you make” and every heart beat is differ-
ent. Yet, in all this complexity we somehow pro-
duce movement that is definable, precise and is
unique to ourselves. It is now suggested that such
variability is an essential healthy aspect of biological
systems and that during injury and disease processes
this variability tends to be diminished.50,53 Such
loss of variability was demonstrated during walking
in patients with chronic lower back pain. When
the trunk was perturbed they seemed to have a nar-
rower selection of postural responses to any sudden
movement.24,25

Goal-orientated movement

Movement is organized with an overall goal or pur-
pose: we reach for a cup, hit a ball or walk to a loca-
tion; but we don’t set out to move our limbs, move
a joint or contract a muscle.56

For an outsider watching a person performing a
task it can be broken down into the action or move-
ment and its outcome, the goal.57 Once we learn
how to achieve a certain goal, the action and the
outcome are integrated to become a unified auto-
matic response. They are represented internally as
images of the goal57,58 When we perform an action
or task, thinking of the outcome/goal triggers the
execution of the associated movement.59 Interest-
ingly, 7-month-old infants favour learning by imitat-
ing movements that have obvious goals but not
those that have ambiguous goals.60,61

The whole body is organized to take part in the
goal of the movement including all the anticipatory
postural adjustments that precede it.62 Different
parts of the body tend to “lead the way” during goal
movement. The arms for reaching or throwing, the
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Fig. 2.4—cont’d. B, Complexity is movement.
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legs for kicking or stepping over an obstacle and the
head leads in the initiation of walking and turning.
Head movement is also led by our senses;63 turning
the head to a sudden noise, looking up or bending
forward to smell or taste. The odd one out is the
trunk: it rarely leads in movement. In rehabilitation
of back conditions should the trunk/spine be a focus
of movement training or should it be engaged within
the overall movement goal?
Clinical note
Movement control should be associated with its
goals during rehabilitation, i.e. rehabilitation should
use goal-orientated and task-specific movements.
Movement where the body itself is the goal may be
less effective in recovering motor control (see also
Internal and external focus and learning, Ch. 5).
Task-dependent muscle recruitment

The muscle recruitment will vary considerably from
one task to another.64–69 For example, the trunkmus-
cles will display completely different activation pat-
terns during standing, walking, reaching to the sides
or forward, bending or lifting or any other imaginable
movement.70,71 Furthermore, even within the same
task, changes in the underlying movement para-
meters and other factors will influence the complex
recruitment of muscles. They include:

• The force – movement which is similar but at a
varying force will change the muscle recruitment.35
• The amplitude of movement – how far a person
reaches changes the pattern of trunk muscle
activation.35,36

• The rate/speed of movement – changing the
speed of movement will also change recruitment
patterns.72 For example, there is different trunk
muscles recruitment during slow or fast arm
movement.30

• The position or direction – slight variations in
underlying posture/position during movement will
change overall patterns of muscle recruitment. For
example, different positions during exercise will
recruit different patterns in the trunk muscles.68

Likewise, movement of the body in a different
direction will change the pattern of activation of the
abdominal muscles.36,73,74

• Contact/contact-free movement (open-closed
kinetic chains) – muscle recruitment is different if
movement is contact-free (e.g. waving your arm)
from movement where the body makes contact
with another base, such as the floor, wall or an
object.75–77 Hence, muscle recruitment in the arms
is different during push-ups (contact) than the same
arms movement performed standing in space
without contact. Interestingly, most of our body is
involved in a mixture of these two contact patterns,
except for the head, which is invariably contact-
free. Does this mean that functional rehabilitation
of the neck should focus on contact-free head
movements?

• Pain – the experience, anticipation or fear of
pain will influence the muscle recruitment
patterns.21,24,25,31,78–81
9
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Clinical note
Misconceptions about motor control:
implications for neuromuscular
rehabilitation

There are several common misconceptions about
motor control which are likely to make rehabilitation
unnecessarily long and complex. They all originate
from the principle of “isolate in order to integrate”. In
these rehabilitation approaches particular tasks are
Thecurrent evidence suggests that alterations of task or
small changes in movement parameters can have a
profoundandcomplex influenceonmuscle recruitment.
No single pattern of muscle recruitment dominates
movement (otherwise it would be impossible to move).
This has important implications for rehabilitation and
further enforces the concept of a functional approach. It
suggests that patients should be trained in a variety of
patterns that are similar to the goal movement.82
broken down until the action of single muscle groups
or muscles chains are singled out and become the
therapeutic focus. Once this is achieved, this local
control is reintegrated into the whole movement.
However, this rehabilitation approach is in conflict
with what is known about motor control:
• The organization ofmovement is about its goals. The

movement programmes are schemes representing
movement sequences not specific muscle
sequences.

• The muscle is never the goal of movement.
Focusing on clenching, tensing, bracing or
holding specific muscles during movement turns
them into the goal of movement.

• Muscles work in complex synergies – they never
The movement should be practised in different
positions, forces and speeds, and using both contact
and non-contact patterns. This would aim to
account for the infinite variability that exists in nor-
mal daily movement. Rehabilitation should not be
restricted to set movement patterns with minimal
variability or focused on particular muscles (e.g.
weight-training or performing biceps curls). Such
an approach will result in the patient’s learning to
control muscles in relation to these specific tasks,
in patterns which are unlikely to carry over to other
tasks (see Similarity principle and transfer, Ch. 5).
work alone.

• Muscle activity is task-dependent – their role
changing in different tasks. Hence, training-
specific control of muscles in one task may not
prepare it for control of a different task (see
Similarity principle and transfer Ch. 5).

• All muscles are equally important, even the
muscles that are silent. From movement
control there is no such thing as an unimportant
muscle. Muscles which are silent or at low
EMG activity are part of the whole control pattern.
Normal movement would be impossible if these
muscles were over active. In stroke patients such
over-activity often results in severe joint
contractures and dysfunctional movement.
The sensory stage

During movement the motor system collects infor-
mation about internal physical events as well as
information from the environment.3,44,83 This is
provided by two feedback systems:

• Proprioceptors – which provide information
about internal mechanical events

• Exteroceptors (vision and vestibular/hearing) –
which provide information about the environment.

When we reach for an object our movement is
organized in response to the information provided by
these two feedback systems. Information from vision
is used to estimate the distance and the size of the
object to be handled.2 The proprioceptive and visual
information is integrated with vestibular information
to maintain the body balanced and upright during the
reaching task.84–86 The skin receptors signal the con-
tact of the fingerswith the object andprovide informa-
tion about its mass, size and texture. Further
information arrives from receptors in the muscles
and joints, indicating the position of the arm in space
and the relationship of different body masses to each
other; the speed and direction of movement and the
force of contraction (sense of effort).47,48,87–94
The processing of sensory information occurs
both at a conscious and subconscious levels.94–98

However, much of this extensive information is
processed at a subconscious/reflexive level, unless
we draw our attention to any element of it.

Role of proprioception

Proprioception has several important roles in motor
processes. It provides:

• feedback for immediate adjustments and
refinement of movement
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• feedback for motor learning

• replenishment of pre-existing motor programmes.

Motor control relies on proprioception for the
final adjustment, refinement and synchronization
of complex movement.99,100 It also provides infor-
mation if the movement strays away from what is
intended, e.g. walking and tripping. Proprioception
losses may lead to unrefined and inaccurate move-
ment, and are believed to predispose the individual
to recurrent injury (see Discussion, Ch. 4).

During very rapid movements the processing of
sensory feedback is too slow to allow correction of
the ongoing movement.42,46,101–106 This is seen in
activities such as walking, jumping, running, fast bal-
listic movements, typing or playing a musical instru-
ment. In these movements the pre-programmed
motor patterns precede the sensory feedback.102

The motor system, therefore, has to rely on the infor-
mation gathered before the onset of, rather than
from the instantaneous feedback during, the move-
ment. Consequently, the correction of the movement
occurs close to or at the termination of movement.
For example, during running and jumping, the activa-
tion of leg extensors precedes the foot contact with
the ground by about 150–180 m. This fact has impli-
cations for preventing injuries in sports. Since the
afferent transmission time within the CNS is fairly
fixed, improving proprioception is unlikely to reduce
injuries that occur during high-velocity movements.
However, injuries may be prevented by changing
the way the person performs the movement (see Dis-
cussions on task-behaviour and correctness of move-
ment, Chs 7 & 8).

Our mind is “shaped” by our experiences and our
experiences are formed by our senses. Propriocep-
tion, therefore, is essential for learning or recovering
control of movement.46 Therefore, partial or com-
plete losses of proprioception may slow down reha-
bilitation. Indeed, re-abilitation of stroke patients
with sensory loss may be more difficult than of
those with an intact sensory system.107,108

The importance of proprioception for motor
learning can be also seen in medical conditions in
which a subject loses all their proprioception (often
due to damage to the dorsal column of the spinal
cord).109 Under these circumstances, the individual
is still capable of performing tasks learned before
the onset of their condition.110 However, they
may find it difficult to modify the task or learn a
new one. In one such documented case, the subject
could still drive the car he used before his illness,
but could not drive a new car as he was unable to
learn the fine adjustments needed for the new
mechanical situation.111

The refinement of the pre-stored programmes is
also dependent on proprioception, without which
the motor programmes deteriorate over time.112

This is experienced in everyday circumstances when
attempting to carry out a physical activity that has
not been rehearsed for a long time (e.g. cycling). A
few “goes” are usually needed to refine the stored
programme.

Proprioception also plays an important role in
body-image and the sense of self. These topics are
relevant to behaviour and movement control, but
are outside the scope of this book (for full discus-
sion see: Lederman 2005 The Science and Practice
of Manual Therapy, Section 3).
Proprioceptors

Proprioceptors (mechanoreceptors) are found in the
skin, muscles, tendons, ligaments and joints (see
Table 2.1 for groups of mechanoreceptors and their
actions).

Afferent fibres from mechanoreceptors converge
segmentally on the dorsal horn of the spinal cord.
This anatomical segmental relationship is lost within
the spinal cord. The afferent fibres tend to diverge
in an ascending and descending manner, over several
segments, synapsing with different neuronal pools
and spinal interneurons. This sharing of afferents
by motor centres has also been demonstrated in
the cortex.132 Hence, many synergistic muscle
groups share common afferent inputs.133–135 This
means that spindle afferents from one group of
muscles supply the motorneurons of the muscle in
which they are embedded, as well as other synergis-
tic muscles.136

The functional implications of the diverging syn-
aptic connections can be demonstrated by tapping
the biceps tendon. When tapped, the reflex response
spreads tomuscles as far away as the pectoralis major,
triceps, deltoid and hypothenar muscles.137 Simi-
larly, tapping the tendon of lateral oblique brings
about a reflex muscle response in all the abdominal
muscles.138 Even passive movement of the shoulder
influences the gain of the motoneurons supplying
muscles of the hand.132 This physical organization
has functional logic. Performance of a task involves
total body movement occurring over many joints
and muscle groups. The information about activity
11



Table 2.1 Mechanoreceptor groups, their anatomical location and function.
3,62,86, 113–131

Receptor Location Function Interesting stuff

M
us
cl
e
te
nd
on

un
it

Spindle afferents

Ia & II

Muscle II afferents are

situated at both sides of the

Ia afferent (on average, there

is only one secondary to one

primary as some spindles

contain only primary

afferents)

Feedback about length,

velocity, acceleration,

deceleration and

minimally about the

force of contraction

The more refined the function

of the muscle, the greater the

number of spindles per unit

weight of the muscle.

The detection of force is

delegated to the Golgi tendon

organ

Golgi tendon

organ

Tendons close to the

musculotendinous junction

Feedback about

dynamic changes in the

force of contraction.

They are not stretch

receptors, as is

sometimes believed.

Contraction of a single

muscle fibre to which

they are attached will

bring about an increase

in their discharge

In some muscles, the capsule

of the spindle is fused or

continues to form the capsule

of the Golgi tendon organ.

They are connected to 10–20

muscle fibres and are generally

not affected by mechanical

events in other muscle fibres

Groups III & IV Muscle Chemosensitive.

Information about

metabolic changes and

muscle damage/

inflammation

Have an indirect influence on

proprioception, via spinal and

higher centres.

Can influence the sensitivity of

the spindle afferents

Jo
in
ts

Groups I & II Joint capsules and ligaments Range, speed and

position of the joint.

Group I (dynamic and

static, low threshold,

slow adapting), Group II

(dynamic, fast adapting)

Most joint afferents are only

responsive to a movement arc

of about 15–20�

Group III Joint capsules and ligaments Information about

dynamic events in

joints.

High threshold receptors

that become sensitized

by extreme joint

position or joint injury/

inflammation

A lowering of threshold

(sensitization) takes place at

the receptor peripherally, but

also centrally within the spinal

cord

Group IV Joint capsules and ligaments Nociceptors.

Convey information

about excessive

stresses at the joint.

Become sensitized in

joint inflammation

Although they are not true

mechanoreceptors, movements

activates some group VI, albeit

providing a poor sense of joint

position.

Receptor sensitization by

peripheral and central

processes
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Receptor Location Function Interesting stuff
S
ki
n
m
ec
ha
no

re
ce
pt
or
s

Five types skin

receptors: two

fast-adapting and

three slow-

adapting

receptors

Skin Convey information

about the contact and

surface texture of

objects.

Contribute to fast

reflexive gripping when

an object is slipping

through the hand.

Skin tension contributes

to joint movement

sense.

More sensitive to

dynamic rather than

static mechanical

stimulation

When skin mechanoreceptors

near the nail bed are

stimulated it elicits a sensation

of flexion at the distal

interphalangeal joint.

Interestingly, the perioral area

of the human face lacks any

proprioceptors except for skin

mechanoreceptors which play

a role in the position of the lips
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in one group of muscles has to be conveyed centrally
to be integrated with all the other spinal motoneur-
ons and higher centres taking part in the movement.
Clinical note
The divergence of afferents has important
implications for proprioceptive rehabilitation. It
suggests that localized, joint/muscle-specific
rehabilitation may not be as effective in recovering
control losses as rehabilitation of whole movement
patterns.
Nociception as feedback

When we are in pain we move differently. Nocicep-
tion is an important feedback system from the body
to inform us about tissue damage or the potential
for it. In response to the experience of pain the
motor system will reorganize movement that is less
physically stressful.

Psychological and behavioural factors related to
the pain experience will have profound effects on
movement control. In many musculoskeletal condi-
tions the intensity of the pain experience and/or
the resultant fear of it will often reflect in more
extensive motor reorganization (Ch. 8).23,31,38,
Clinical note
Injured individuals and those in pain will select
movement patterns that are beneficial for them. It
raises the question, when does this positive
protection strategy become a dysfunction, and at
what point should there be a therapeutic intervention
to change it? These issues will be discussed more
fully in Chapter 7.
Summary points

• The motor system organizes and controls skeletal
muscle activation during movement, posture and
the musculoskeletal aspect of behaviour and
expression.

• Motor processes have identifiable phases:
integration, motor and feedback stages.

• Movement is stored as a scheme rather than as a
fixed representation of the movement or specific
muscle sequences.

• All movement is goal or task orientated and this
should be reflected during rehabilitation.

• Rehabilitate whole movement – focusing on
single muscles or muscle chains is not effective or
essential for recovering motor control.
13
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• Muscle recruitment changes according to the
ongoing task or changes in the movement
parameters.

• The motor system integrates proprioception
and exteroception for the organization of
movement.

• Proprioception provides information about
internal mechanical events in the body.

• Proprioception is used by the motor system
for the refinement of movement, motor
14
learning and replenishing existing
programmes.

• Pain is also feedback that has a profound
influence on movement control.

• The aim of this chapter was to demonstrate the
complexity of the motor output.

• This complexity promotes a functional approach
in rehabilitation where the focus is on whole,
goal-orientated movement.

• “Integrate in order to coordinate”.
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3
Motor abilities
When we observed an individual performing a spe-
cific task in which they are talented we often refer
to them as being “skilful”. Levels of skilfullness
can be observed even in normal daily activities such
as the unskilled waddle of a toddler in contrast to
the skilful walking of an adult. Similarly, we can
instantly recognize the dysfunctional “unskilful” gait
of a person with an injury.

A skill is how well a person can perform a given
task. The proficiency in performing any skill is
dependent partly on practice but also on the indivi-
dual’s cognitive, sensory and motor abilities.

Motor abilities are motor control building blocks
that underlie all movement.1,2 To be able to walk it
is necessary to have control of balance, multi-limb
and whole-body coordination as well as to have con-
trol of several other abilities. If any of these abilities
is affected the skill of walking will be affected, as
well as several other skills that depend on balance
and coordination. Some of these specific control
losses can be assessed, identified and become the
focus of the therapeutic intervention.

In this chapter the different motor abilities are
described. Their assessment and specific therapeu-
tic intervention will be discussed in Chapter 12
(see also DVD).
Motor complexity model

The area of motor abilities is extensive and it is
estimated that there are numerous such under-
lying abilities, perhaps running into the hundreds.3

As they are presented in the literature they are
impractical as a model for rehabilitation. I have,
therefore, taken the liberty of re-organizing them
into a practical clinical approach. As a consequence,
some of the abilities’ names have been changed to
make them user-friendly and new abilities have
been added (with apologies to Fleishman).1,2

One clinically useful approach is to classify abil-
ities according to their level of motor complexity.
In this classification abilities are categorized into
four levels, with skill being the top level (Fig. 3.1):

• Parametric abilities

• Synergistic abilities

• Composite abilities

• Skill.

Parametric abilities are the least complex control
factors in this model. These abilities can be best
described by looking at a simple movement such as
reaching. Several variables of this movement can be
modified without altering the overall pattern (these
are the movement parameters described in Ch. 2).
The movement can be executed with varying degrees
of force and at different velocities (fast/slow). It can
be carried out using different arm lengths (range);
with the elbow fully extended or partially flexed.
We can repeat this pattern of movement for long or
short duration depending on our endurance. From
this we can identify four such parametric abilities:

• Force

• Velocity/speed /rate

• Length

• Endurance.

The next level up in complexity is synergistic
ability. During the reaching action, elbow flexors



Parametric abilities

Force, velocity, length, endurance

Synergistic abilities

Co-contraction and reciprocal activation

Composite abilities
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transition time, motor relaxation
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Fig 3.1 � The motor complexity model presenting some of the important abilities underlying
movement control.
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and extensors have to be simultaneously controlled.
As themovement variables are modified in one group
they have to be reflected in the “opposite” group.
Hence, synergistic ability is about the relationships
between muscle groups or between movement pairs
(flexion–extension, adduction–abduction, internal–
external rotation or any combination of these pat-
terns). There are two identifiable synergistic control
patterns:

• Reciprocal activation

• Co-contraction.

Reciprocal activation serves to produce movement
while co-contraction increases the stiffness and sta-
bility (steadiness) of joints during static posture and
movement.4–7

Further up the complexity model are the com-
posite abilities. These abilities rely on other com-
posite abilities, but also on the less complex
parametric and synergistic abilities. Using the
arm-reaching movement as an example, it was
identified that synergistic ability is needed for
elbow movement. However, what happens during
simultaneous shoulder and elbow movement?
Now, the motor complexity has moved a notch
up. The elbow synergistic control has to integrate
with that of the shoulder. The harmonious
20
coupling of the two areas can be considered as
coordination ability. If at the same time the hand
was to manipulate an object, the fine harmonious
working of the fingers could be considered as fine
coordination. The movement of the whole arm is
single-limb coordination and multi-limb coordina-
tion if we were synchronously moving the other
arm. Since the arms are attached to the rest of
the body we have to also consider the harmonious
integration of movement between the limbs and
the trunk as body coordination.

However, there are other factors that come into
play while we stand. Upright posture and locomotion
depends on body coordination ability, but also on bal-
ance or postural stability. Furthermore, in daily activ-
ity we tend to perform in succession various tasks.
The reaching movement, if it were while cooking,
would be followed by actions such as holding, whisk-
ing or tossing food in a pan, etc. The ability to
smoothly and rapidly change between actions is
termed here as transition time. It is the time it takes
to reorganizemovement control between two dissim-
ilar events. Finally, if the cooking was for a large num-
ber of guests and under a time pressure, we might
find that our shoulders are tense and may feel achy
and stiff. This psychomotor response to stress will
be termed here as motor relaxation ability.

zahedi
Highlight
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Highlight
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From the description above four major compos-
ite abilities have been identified:

• Coordination (fine, single- multi-limb and body
coordination) ability

• Balance/postural stability

• Transition time

• Relaxation ability.

The individual’s skills are placed at the top of the
motor complexity model as they contain various
combinations of the abilities described above.

Abilities can affect each other, but they can also exist
as independent motor losses. For example, in the hand
of a stroke patient coordination ability can be affected
independently of force and velocity abilities.8,9

The classification of abilities by complexity is a
useful clinical tool. It provides a rational and method-
ical approach for assessing and treating specific
motor control changes.

Parametric abilities

Force control

Force control is the ability to provide adequate
force for optimal execution of movement. It is the
ability to regulate force as well as recovering force
losses. Included in force control is the ability to
fully relax muscles. The way to think about force
control is to imagine a light dimmer switch – it
can be switched on/off or gradually dimmed.

Force control is the ability to regulate the force rather
than make someone stronger. For example, a stroke
patient can deliver a bone-crushing handshake, but
may not be able to fine grade the squeezing force
between low,mediumandhigh forces.10,11Conversely,
in children with hemiplegia there are force losses but
force regulation is saved in the affected hand.12,13

Force control is also the ability to fully relax
muscles, i.e. no force. During movement some mus-
cle groups will be motorically inactive. This motor
relaxation is as important as motor activation for
the execution of normal functional movement. The
inability to relax force often results in severe move-
ment dysfunction, such as seen in writer’s cramp
(dystonias) or in stroke patients.14–17

Force loss on the other hand is the inability to
generate sufficient force for the optimal execution
of movement. Force loss can be due to direct phys-
iological and pathological changes to the muscle tis-
sue or its motor innervations. However, the most
common manifestation is in failure of voluntary acti-
vation seen in musculoskeletal injuries. Like a light
dimmer switch, the muscle forces are turned down
by the central nervous system (CNS) to unload the
damaged or sensitive tissues (Ch. 7).18–24 Centrally
mediated force losses can also be seen in stroke
patients as unilateral weakness (hemiparesis) or com-
plete force loss (hemiplegia).16

Frequently, force loss is the most obvious move-
ment deficit and can become the unjustified focus
of treatment25,26, sometimes at the expense of
overlooking other motor control changes.
Length control

Length control is the ability to effectively regulate
the range of movement. This include both the elon-
gation and shortening control of the muscles.

Length control changes are often observed in injury
as a narrowing of the ranges of movement. This is a
protection strategy to prevent further tissue damage.
The hypersensitivity to stretching and reflexive guard-
ing seen after injury is an example of length control.
This can be seen during straight-leg raising, where
there is a sudden resistance to hip flexion by muscle
guarding. Another example is the loss of flexion relax-
ation of the back muscle in patients with chronic low
back pain (CLBP).27 This is a length protection strat-
egy to prevent the individual from bending fully for-
ward. Regulation of length can be an important issue
for patientwith damagedCNS. For example, in stroke
patient the hypertonic, hyper-flexed wrist and hand
partly represent a dysfunctional control of length.

Often in rehabilitation the focus is on achieving
maximum length. However, the inability to achieve
maximum length could equally be due to an inability
to effectively shorten the muscle. This is seen, for
example, in neck conditions where there is an inability
to rotate the neck to the symptomatic side (evenwhen
pain subsides). This could be due to changes in
shortening-force control of the neck’s rotators. Simi-
larly patients with stiff, non-painful, frozen shoulder
may find full flexion difficult even after regaining the
passive range of flexion. This may be due to the inabil-
ity to produce effective length-force shortening of
shoulder flexors to elevate the arm (Fig. 3.2). Hence,
the therapeutic focus should be on the length-
shortening synergy of themovement pairs (see below).

The control of length also relates to the maximum
range, i.e. how far an active movement can be exe-
cuted. Range losses are often seen in musculoskeletal
conditions where the patient, due to immobilization
or pain, was unable to use the full range of move-
ment. This length change is partly shortening
21
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Fig 3.2 � Active range depends on control of shortening and
lengthening of the synergistic pairs.
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adaptation in the muscles and connective tissues, but
also a dysfunctional “learned shortening” within the
neuromuscular continuum.

Length adaptation raises the issue of active and pas-
sive flexibility. Active flexibility is the maximum joint
range achieved by active shortening and elongation of
the local muscles. Passive flexibility is the extreme
physiological range of a joint, achieved when all the
local muscles are relaxed. If you extend your fingers
actively, and without assistance, you will reach a spe-
cific range. Keep the fingers in the same position, then
using the other hand push the fingers further into
extension while relaxing the stretched hand. The pas-
sive range should be greater than the active range.
Therefore, passive stretching is useful for improving
passive range whereas length control is necessary for
active flexibility. This has important clinical implica-
tions. For example, patientswith the stiff phase of fro-
zen shoulder can be stretched passively into shoulder
flexion. However, when they are instructed to stand
and raise their arm, they often can only achieve a rela-
tive small degree of flexion – a dysfunctional active
range. Passive stretching does not necessarily improve
the active range. For improvements in active range the
patients should activelymove their shoulder at the end
ranges (see Ch. 12, Challenging length control and
functional stretching).
Velocity/speed control

Speed ability is the capacity to regulate the rate of
movement (acceleration/deceleration) and the abil-
ity to produce maximum speed of movement.
22
The ability to regulate the speed is seen, for
example, when moving the computer mouse at var-
ious speeds to control the screen pointer.

Maximum speed is how fast a movement or a
task can be made between two targets. For exam-
ple, walking a certain distance, reaching for an
object or producing an explosive force (mixture
of velocity and force). It is also the rate of produc-
ing static peak force, such as seen in sudden iso-
metric contraction to block or resist a sudden
perturbation.

Changes in speed ability are often seen in musculo-
skeletal injuries. Individuals tend to slow down their
movement as an evasive strategy to pain but also to
reduce the forces at the area of damage (reduce the
speed¼ reduce the force).27–32 For example, patients
with lower back pain tend to adapt a slow walk, which
may not fully recover even when they are no longer in
pain.
Neuromuscular endurance

In the context of motor rehabilitation, endurance is
defined as the ability to maintain a physical activity
until it can no longer be continued (neuromuscular
fatigue). Fatigue often manifests as pain, reduced
force and velocity of the affected muscles. The
symptoms of fatigue are relieved by a period of
rest.33

A common clinical observation is that individuals
with musculoskeletal injuries often demonstrate
reduced neuromuscular endurance in the area
of damage, even in the absence of pain.27,34–38 A
similar observation is seen in patients who have suf-
fered CNS damage, such as stroke and multiple
sclerosis.39–42 Individuals who suffer from non-trau-
matic conditions such as trapezius myalgia and
chronic neck pain also experience reduced endur-
ance in the painful muscles during repetitive tasks
(Ch. 9).43

Reduced neuromuscular endurance is associated
with central control mechanisms, which are partly
reflexive (spinal) and cognitive/psychomotor (higher
centres).33,42,44 It is also partly due to peripheral
factors such as muscle atrophy following disuse or
immobilization.

Endurance can be improved by physical training
and degraded by disuse or injury. It suggests that
the central mechanisms that control endurance are
mutable and could be influenced by neuromuscular
rehabilitation.
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Synergistic abilities

Reciprocal activation and co-contraction
control

Synergistic control represents the fact that “muscles
don’t work alone”, but in a complex relationship to
other muscles.45 This has important implications
for rehabilitation. Damage to one group will inevita-
bly alter the control of all its synergists. Even fatigue
or delayed muscle soreness in one muscle group will
have an influence on control of the non-exercised
synergists. For example, fatigued hamstrings will
influence the control of non-exercised quadriceps
and similarly fatigued biceps will influence tricepts
control.46–48 The effect is likely to spread even to
more distant synergists. For example, fatigue in
quadriceps will influence the control of the non-
exercised gastrocnemius muscle.49 Hence, it may
be more effective to engage the synergistic pairs
and whole movement cycles rather than single-mus-
cle or single-direction rehabilitation (e.g. biceps
curls).

There are two synergistic control patterns during
movement (Box 3.1):

• Reciprocal activation

• Co-contraction.

Reciprocal activation is the simultaneous, active
shorting and elongation of muscle pairs needed to
produce movement at a joint.

Co-contraction is the simultaneous activation of
several muscle groups to stabilize joints during static
postures (static stabilization or steadiness) or during
movement (dynamic stabilization). Co-contraction
also has a role in refining movement. 4,5,50–55

The two synergistic patterns can be observed, for
example, during head rotation. Some muscles will
produce the rotation movement (reciprocal activa-
tion) while others will dynamically stabilize the head
Box 3.1

Home lab
Co-contraction and reciprocal activation exercise.
With an outstretched arm draw large imaginary
numbers from 1 to 10. Focus on your shoulder and
feel how the muscles are reciprocally activated. Now
draw small-amplitude numbers as fast as possible.
You should now feel the shoulder muscles
co-contract (as well as the rest of your body).
(co-contraction), keeping it upright and preventing it
from flopping to the side. Once the head has reached
its position, all the neck muscles co-contract stati-
cally to maintain the head in the upright position
(otherwise the head will fall to the side).

During various motor activities, these patterns of
contraction take place jointly but with one pattern
being dominant, depending on the task and the
angle of the limb (see Box 3.1).56,57 It should be
noted that there are no specific muscles for recipro-
cal activation or co-contraction. Muscles can switch
their roles between being stabilizers or “movers”, or
both, depending on the position of the limb and the
patterns of movement.57–59

It has been demonstrated that both patterns of
activation have separate cortical control centres,
reflecting their distinct functional roles.60,61 During
motor learning, motor control transforms from pre-
dominantly co-contractions into more reciprocal
patterns (which are more energy-efficient).62

Relative factors with synergisms

The two synergistic patterns represent the relation-
ship between several factors that control the move-
ment pairs (Fig. 3.3):

• The relative activation of the parametric abilities

• The relative timing and duration

• Dominance or failure of one of the synergistic
patterns.

The relative relationship of parametric abilities
can be observed in reciprocal activation. During
Relative force, velocity, length and endurance
Relative onset timing and duration

Fig 3.3 � Synergistic control includes the relative parametric
as well as the relative timing and duration in activation of the
movement pairs.
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rhythmic movement force will increase on one side
while reducing on the other; there is muscle elonga-
tion on one and shortening on the other. Velocity
will be equal on both sides; however, one will be
lengthening while the other shortening. In injury
and pain conditions this normal relationship is mod-
ified. For example, quadriceps inhibition and ham-
strings hyperexcitability have been demonstrated
in knee injuries.63–65

Timing and duration in synergies

Imagine a simple repetitive movement such as elbow
flexion–extension. During the phase change (i.e. flex-
ion to extension), the muscles in the movement pairs
will have to reverse their action from contraction to
relaxation. These changes require complex synchroni-
zation in relative timing between the muscle pairs
(Fig. 3.4). Furthermore, the relative duration of con-
traction or relaxation between the synergists also has
to be finely synchronized.32,66–73 Such changes in
timing and duration have been demonstrated in
patients with lower back pain.68–71,74–78 There is some
Rhythmic movement
(reciprocal activation)

A

Fig 3.4 � Electromyograph of synerg
co-contraction. A, Electromyograph (E
B, EMG trace co-contraction.
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evidence that timing and duration issues may predis-
pose an individual to injury.79,80

One aspect of timing that has received much
attention in recent years is the onset time. This
represents the period between the initiation of an
action and the relative onset time of different mus-
cles.32,66–73 This method has been used in research
to examine how the onset timing changes in various
musculoskeletal injuries and pain conditions.

Dysfunctional synergistic control

Failure in synergistic control can be due to several
underlying mechanisms. It can be due to a dysfunc-
tional control of parametric abilities within the syn-
ergism, i.e. the relative force, length and velocity. It
can be about the relative timing and duration
between the movement pairs. Another possibility
is that one of the synergistic patterns becomes more
dominant or the patient is unable to fully recruit
that pattern to produce normal movement.

A change in favour of or dominance of one pattern
of synergistic control has been demonstrated in
Actively held in position
(co-contraction)

B

ists during reciprocal activation and
MG) trace reciprocal activation.
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individuals with intact and damaged motor system.
Patients with CLBP tend to increase their co-contrac-
tion strategy duringmovement.30,81,82 The dominance
of co-contraction can also be seen in conditions such as
writer’s cramp and hypertonicity in stroke
patients.14,17,83–88 In stroke patients this was attribu-
ted to malfunction of the centres that control move-
ment synergisms.61 It is also possible that one of the
synergistic patterns becomes less effectively con-
trolled. For example, functional instability of the ankle
is associated with co-contraction failure.89 The loss of
normal swinging of the affected arm in stroke could
be seen as the inability to control reciprocal activation.

Composite abilities

The composite abilities described below have been
narrowed down and modified to the ones that I feel
are clinically important. Composite abilities are influ-
enced not only by other abilities in the group but also
by the contraction and synergistic abilities (Fig. 3.5).

Coordination

Coordination is the harmonious and synchronous
control of two ormore joints or bodymasses. Coordi-
nation may be affected locally, in the hand following
immobilization (fine cordination);90 more widely, in
Composite
coordination (m

Parametric ability
force, velocity, and length

Composite ability
coordination (single limb)

Parametric ability
force, velocity, and

Parametric ability
force, velocity, and length

Limb A

Parametric ability
force, velocity, and

Fig 3.5 � Motor abilities in control of a single and two limb
parametric abilities of the individual muscle groups. Next, is
synergistic level. The composite ability incorporates the und
themovement of a whole limb (single-limb coordina-
tion); bilaterally, in the coordinated activities of
limbs (multi-limb coordination) or extensively,
affecting the whole body (whole-body coordination).

Generally, patients with CNS conditions aremore
likely to have extensive coordination losses. In mus-
culoskeletal conditions coordination losses may be
more localized, pertaining to the area of damage or
pain.9,90,91
Balance

Balance is the ability to efficiently maintain upright
movement or stance with minimal physical stress
and expenditure of energy. This ability depends on
several factors: the sensory inputs from the vestibu-
lar apparatus, vision,92 proprioception, hearing,93,94

central integration/processing of sensory informa-
tion95 and control of whole-body coordination and
balance.3 Failure in any of these systems or pro-
cesses will manifest as unsteadiness and unrefined
movement and stance or, at worst, the inability to
maintain an upright posture.

There are differences between static balance
(standing still, sitting) and dynamic balance (walking,
running and climbing stairs). Dynamic balance is
more complex as it makes greater demands on motor
control and cognitive-motor processes. Patients who
 ability
uilti limb)

 length

Synergistic ability
reciprocal activation
and co-contraction

Limb B

 length

Synergistic ability
reciprocal activation
and co-contraction Joint

Muscle

s. At the lower end of the motor complexity are the
the relative paired activation of the muscle groups at
erlying parametric and synergistic abilities.
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demonstrate balance losses should be challenged
both in dynamic and static balance (Ch. 12).

Postural stability and instability

Postural stability relates to local proprioception or
motor control losses from the lower limbs or the
trunk/neck that affect balance. It is often measured
as the magnitude of sway or steadiness to perturba-
tion during standing.

In musculoskeletal injuries reduced propriocep-
tion or loss of normal control of synergism at the
area of damage may produce what seems like a bal-
ance loss. For example, patients with lower back pain
may display postural instability associated with
delayed response times in the trunk muscle.68–
71,75,76 Similarly, patients with an ankle injury may
find balancing difficult on the injured side due to
proprioceptive and synergistic control changes in
the lower limb.96

This is somewhat different to central losses where
balance is more widely affected. In these conditions
the patient may find balance to be equally difficult
on each or both legs, or even whilst sitting.

The distinction between balance and postural sta-
bility has some clinical implications. In musculoskel-
etal conditions the losses relate more to postural
Internal prompt
or external signal

Transition

Reaction tim

Fig 3.6 � Transition time is the total p
execute one task after another.
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stability rather than true balance control. Postural
instability is more localized (e.g. affecting balance
on one limb); patients take less time to recover and
may use compensatory sensory-motor strategies that
overcome these losses (weight-bearing on the non-
affected side). However, central or vestibular causes
for balance losses are generally more extensive condi-
tions, require longer recovery periods and may only
partially recover depending on the extent of central
damage.

Transition time

Transition time is the period it takes to reorganize
movement between two dissimilar events and to
carry out the subsequent task skilfully (Fig. 3.6).
For example, if you hop on a single leg from side
to side and than suddenly stop, the body will sway
until it settles into the static balance. This repre-
sents the organization time between dynamic and
static balance. If this is repeated several times
you will find that the organization of the static bal-
ance becomes progressively and more rapidly
controlled.

Transition rate represents the duration it takes
for sensory inputs to reach central motor areas,
to process this information, to make decision
 time

e + Movement time

eriod needed to organize and
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about the action to take and the time it takes the
motor commands to reach the muscles (reaction
time). It also includes the period required to
complete all the postural adjustments and the
observable execution of the movement in the
subsequent task (movement time). The different
elements within this chain of events can occur
within a fraction of a second, too rapidly to be
assessed separately in the absence of lab tools.
Therefore, the term “transition time” has been
introduced as a clinical reality. What is humanly
possible (in my experience) is to observe the grand
total of how rapidly and smoothly a person can
change between two activities – inaccurate, but
good enough clinically.

Longer organization times can be often observed
in various musculoskeletal injuries and in patients
with central damage.28–32,97 A stroke patient may
have difficulties in organization within or between
tasks, such as sitting, getting up and walking, or
walking and turning around. Such activities are
marked with a long pause for reorganization
between the two actions.

Interestingly in sports, some triathletes report
discoordination when running after cycling. This
was associated with the inability of the motor sys-
tem to effectively reorganize itself between the
two intense physical activities.98

Motor relaxation

Motor relaxation is the ability to reduce neuromus-
cular activity to the optimal level necessary for
maintaining a motor task or to become inactive.
Motor relaxation represents the flip side of motor
activation. It is paradoxically a neurologically active
motor process.

Motor relaxation and force relaxation control
(see force ability) are seen in different conditions.
There are several conditions where the individual
develops pain conditions by tension holding, such
as trapezius myalgia or chronic neck pain (Ch. 9).
It is the inability to relax in a psycho-motor dimen-
sion. Force relaxation ability, on the other hand, is
associated with more reflexive mechanisms where
specific areas become hypertonic such as seen in
central nervous system damage.

Although motor relaxation and force ability are
the outcome of different processes, the clinical
management has the same aims (relax the overac-
tive muscles) using the same approach (motor
relaxation).
Mutability of abilities

According to motor control research, some of the
motor abilities described above are a mixture of
genetic traits and learning that develop during child-
hood and adolescence.1–3 Coordination, for example,
is one such ability that is genetically determined.99

Once the motor system has matured in adult life
some of these abilities become resistant to change.
However, they may retain a limited capacity to be
modified by practice.100,101 In other words each indi-
vidual has a “personal best” in any of these control
variables (except in the parametric and synergistic
abilities that rely partly on central and peripheral
adaptation to training).

The aim in neuromuscular re-abilitation is to help
the person recover their losses to the “best of their
ability”, rather than improving their personal best.
It has been demonstrated consistently that all abil-
ities in the motor complexity model can be affected
by musculoskeletal injury, psychomotor conditions
or CNS damage, see summary in Table 3.1.

It should be noted that in musculoskeletal condi-
tions there are no single ability changes. They are
part of an overall protective strategy, with multiple
options and containing a variety of component
changes (the abilities). One common misconception
about abilities is to view them as a unique, single
outcome (or cause) of a particular condition. This
is exemplified by the core stability training
approach, where the focus is on normalizing the
timing delay in the abdominal muscles. However,
this change is only a small element in the overall
motor strategy of a person suffering from back pain,
as depicted in Table 3.1.
Can motor abilities be
normalized?

There is some evidence that motor abilities can be
normalized by training and rehabilitation.

Most obvious changes can be observed in the para-
metric abilities. For example, physical training has
been shown to reduce arthrogenic inhibition in the
knee (force control).23,169,170 In patients with early
osteoarthritis of the knees and post meniscectomy,
exercise rehabilitation has been shown to improve
force and endurance abilities.169,171 In chronic lower
back patients lumbar extension exercises were shown
to improve trunk muscle strength, cross-sectional
27



Table 3.1 Examples of motor abilities affected in various conditions

Conditions Parametric motor abilities Synergistic Composite

Force Length Velocity Endurance Co-contraction/
reciprocal
activation

Coordination Balance/postural
stability

Transition
time

Relaxation

Lower back

pain

Force losses in trunk

muscles in acute and

chronic lower back

pain (CLBP)

patients.18,19,37,102,103

Loss of flexion

relaxation in

the spinal

muscles

during flexion

in patients

with CLBP.

Extensors

activation

prevents full

forward

bending.27

Individuals

with high

pain-related

fear had

smaller

excursions of

the lumbar

spine for

reaches to all

targets at 3

and 6 weeks,

but not at 12

weeks

following pain

onset.31

Smaller stride

length.30

Reduced

velocity of

trunk

movement

during

induced back

pain.32

Individuals

with high

pain-related

fear had

smaller peak

velocities and

accelerations

of the lumbar

spine and hip

joints, even

after

resolution of

back pain.31

Walking

velocity

significantly

lower in lower

back pain

(LBP)

patients.28–30

Increased

fatigability of

trunk muscles

in patients

with

CLBP.27,36–38

Impaired postural

control of the lumbar

spine is associated

with delayed trunk/

abdominal muscles

response times

in CLBP

patients.68–71,74–78

Increase in trunk

co-contraction in

CLBP patients.79,82

Increase

co-contraction in

trunk during walking

and additional

cognitive demands.30

Lumbar spine-hip

joint coordination

altered in back

pain subjects.148

Dis-coordination

in pelvis–thorax

coordination in

LBP.28,29

Changes in postural

control in CLBP.72,158

Impaired postural

control of the lumbar

spine associated with

delayed muscle

response times in

CLBP patients.76

Changes in postural

control unrelated to

pain in CLBP.159

Post spinal surgery

postural control

changes both in pain

and pain-free subjects.

However, more evident

in the symptomatic

subjects.160

Hip strategy for

balance control in

quiet standing is

affected in CLBP.161

Experimental muscle

pain changes

feedforward postural

responses of the trunk

muscles.68

Compared to

healthy controls,

persons with

LBP exhibited a

reduced ability

to adapt trunk–

pelvis

coordination and

spinal muscle

activity to

sudden changes

in walking

velocity.28,29

Slower reaction

time in LBP

patients.

Demonstrated

recovery of

reaction time

with training.164

Not studied (but

should be).
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Conditions Parametric motor abilities Synergistic Composite

Force Length Velocity Endurance Co-contraction/
reciprocal
activation

Coordination Balance/postural
stability

Transition
time

Relaxation

Non-

traumatic

chronic.

neck pain

Trapezius

myalgia.

Tension

headaches.

Traumatic:

chronic

whiplash.

Demonstrated muscle

weakness in cervical

muscle in chronic

whiplash

patients.104,105

Trapezius myalgia –

reduced force in

affected side.106

Reduced

cervical range

of motion in

whiplash

patients and

chronic neck

pain.112,113

Only small

non-

significant

velocity

changes in

head

movement.119

Longer time

to produce

peak force for

whiplash

subjects.120

Reduced

cervical flexor

endurance

following

whiplash

injury.35

Reduced

endurance in

neck muscles

in chronic.127

Tension

headache –

reduced

endurance in

neck

flexors128

Changes in

synergists’

recruitment during

isometric

(co-contraction) and

dynamic (reciprocal

activation) in acute

whiplash patients.133

Tension headache –

abnormal

co-contraction and

reciprocal activation

in neck

muscles.134,135

Less refined

neck movement

in chronic

neck pain

patients.113,119

Balance most

unstable

during gait

involving

task-specific

head

movements.149

Dis-coordinated

movement of

jaw and

head movement

in whiplash.150

Chronic neck

pain – abnormal

cervical muscle

recruitment

during

coordination

exercise.108,151,152

Chronic neck pain

patients have reduced

whole body and head

postural stability.149,162

Tension headache –

reduced postural

control.163

Chronic neck

pain patients

have reduced

head stability

during

perturbations.162

Inability to relax in

whiplash,

trapezius myalgia

and chronic neck

pain.148,149,166

Trapezius myalgia

– inability to relax

specific

muscles.167

Chronic neck

pain – inability to

relax different

muscles in the

neck and

shoulder.151,152,168

Continued

2
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Table 3.1 Examples of motor abilities affected in various conditions—Cont’d

Conditions Parametric motor abilities Synergistic Composite

Force Length Velocity Endurance Co-contraction/
reciprocal
activation

Coordination Balance/postural
stability

Transition
time

Relaxation

Knee Abnormal relationship

in force between

quadriceps and

hamstrings in anterior

cruciate ligament

(ACL) deficient

knee.63–65

Force losses in

quadriceps femoris

after ACL repair.107

Reduced knee

range of

motion –

external-

flexion

moment

during various

gait activities

in ACL

deficient

knees.64,114–

116

Reduced

walking

velocity in

painful

osteoarthritis

(OA)

knees.121–123

Normal

endurance in

quadriceps

pre and post-

operative ACL,

but forces

losses were

present.129,130

ACL damage –

increase

fatigability of

hamstrings

during

walking.131

Two different

adaptive strategies

following ACL tear.

Change in reciprocal

and co-contraction

strategies.136

Changes in the

timing and duration

of knee synergists

during movements in

ACL tears.137–139

Reduced stabilization

in individuals who

have knee instability

following ACL rupture

with return to pre-

injury activities.140

ACL injury -

“non-copers” utilize a

stabilization strategy

which not only is

unsuccessful but may

lead to excessive joint

contact forces and

which have the

potential to damage

articular structures

(Rudolph et al 1998).

Increase

co-contraction

during walking in

medial OA.142

ACL damage.

Changes in

interjoint

coordination of

lower limb.91

ACL-deficient subjects

cannot adequately

perform postural

adjustments.182

Loss of ability to

respond

normally to

sudden postural

perturbations in

ACL tears. Also

non-injured side

affected.182

Not applicable.

3
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Conditions Parametric motor abilities Synergistic Composite

Force Length Velocity Endurance Co-contraction/
reciprocal
activation

Coordination Balance/postural
stability

Transition
time

Relaxation

Shoulder

conditions

Impingement – force

deficits and muscular

imbalance in the

scapular

muscles.108,109

Force control affected

(ability to maintain a

steady force) during

submaximal

contraction �35%

MVC.34

Although

range is

reduced, may

be associated

with

pathological

changes in

tissues.

Impingement

– bilateral

(painful and

non-painful

sides)

decrease in

the time to

peak tension

during medial

rotation of

shoulder.97

Frozen

shoulder-

reduced

endurance in

deltoid.132

Impingement

– reduced

endurance of

trapezius,

deltoideus,

infraspinatus,

and

supraspinatus

during

submaximal

contraction,

not related to

pain.34

Impingement –

change in onset

timing of rotator cuff

muscles during

shoulder external

rotation in throwers

with and without

symptoms.80

Muscular imbalance

in the scapular

muscles.108,143

Abnormal muscle

recruitment timing in

the trapezius and

scapular muscle.144

Abnormal muscle

recruitment in the

shoulder in

symptomatic and

asymptomatic

subjects, but greater

deficits in

symptomatic.145

Frozen shoulder –

changes in

coordination of

different part of

trapezius.146

No available data. Not applicable. No available

data.

Not studied

Continued
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Table 3.1 Examples of motor abilities affected in various conditions—Cont’d

Conditions Parametric motor abilities Synergistic Composite

Force Length Velocity Endurance Co-contraction/
reciprocal
activation

Coordination Balance/postural
stability

Transition
time

Relaxation

CNS damage Stroke – weakness in

grip strength and

isometric

extension.110,111

Excessive abnormal

flexor force limiting

voluntary finger

extension.110

Children with

hemiplegia – force

losses but saved

force regulation in

affected hand.12,13

Stroke –

abnormal

constraints in

range.117

Abnormal

constraints in

linkage

between

activation of

the elbow

flexors and

shoulder

extensors,

abductors, and

external

rotators.118

Loss of

velocity but

not timing in

ankle

movement in

incomplete

spinal cord

injury.124

Stroke –

patients

moved their

heads at

lower

velocities.125

Slower

movement

velocity.126

Fatigability in

individuals

suffering from

a variety of

central

nervous

system (CNS)

conditions.42

Dysfunctional

co-contraction in

leg muscles of

children with

cerebral palsy.147

Deficits in the

coordination of

agonist and

antagonist muscles

in stroke

patients.57,87

Stroke – presence

of abnormally large

silent duration in

co-contraction at

different angles. This

was correlated with

postural instability

and oscillations

about the final

position of the arm

after unloading.57,87

Stroke – single-

limb dis-

coordination.153,154

Change in

inter-limb

coordination.154

Discoordination of

normal rhythm of

swinging the

arms.156

Loss of fine

coordination (fine

control) in the

hand.157

Stroke – patients had

altered postural

adjustments to

voluntary head

motions during

standing.125

Increase in time

to organize

multi-limb

coordination at

onset of

movement.

Improves

towards the end

of movement.165

Not studied.

3
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area and endurance.172–175 In patients with chronic
neck pain, endurance and muscle strength improved
after 2 weeks’ training specific to these abilities.176

A functional rehabilitation program was shown to
improve the velocity of movement ability in lower
back and knee damage patients.164,177

The synergistic muscle activity in patients with dif-
ferent joint conditions has also been shown to be
altered by physical therapy. In functional instability
of the ankle, treatment by challenging postural stabil-
ity virtually eliminated the symptoms of instability as
well as significantly changingmuscle onset times.96,178

Similarly, trainingwas shown to change various factors
in synergistic control of normal and anterior cruciate
ligament (ACL) deficient knees.179,180 Postural stabil-
ity and control of coordination was also shown to be
improved by TaiChi, which is a movement approach
that challenges these motor abilities.181
Summary points

• Skill is the measurement of how proficient a
person is in performing a particular task.

• Skills depends on a mixture of sensory-motor and
cognitive abilities of the individual.
• Motor abilities are the various control factors that
underlie movement.

• Motor abilities can be classified according to their
level of motor complexity: parametric,
synergistic and composite abilities.

• Parametric abilities are: force, velocity/speed/
rate, length, endurance.

• There are two identifiable synergistic
control patterns: reciprocal activation and
co-contraction.

• Reciprocal activation serves to produce
movement while co-contraction’s role is
to increase the stiffness and stability
(steadiness) of joints during static posture and
movement.

• Composite abilities are: coordination (fine,
single- and multi-limb and body coordination),
balance/postural stability, transition time and
relaxation ability.

• Motor ability changes can be observed
in musculoskeletal injuries and pain
conditions, and in patients suffering from CNS
damage.

• There is some evidence that motor abilities can
be normalized by activities that challenge them
specifically.
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4
Sensory abilities
Sensory losses, and in particular proprioceptive def-
icits, may lead to unrefined movement and the loss
of ability to respond effectively to sudden demands
and may impede motor adaptation/learning. This
chapter will examine how proprioceptive losses
may come about and the underlying peripheral and
central mechanisms seen in different conditions.

Sensory abilities include proprioception and
exteroception (vision, vestibular apparatus and
audition). Generally, clinical care of extero-
ception is out of the scope of neuromuscular rehab-
ilitation. However, these sensory contributions
should not be underestimated and their losses
should be considered in the overall management
of the patient.1

Sensory complexity model

Similar to motor abilities, sensory information can
be categorized into groups of varying levels of com-
plexity (Fig. 4.1).

Let us start with a simple movement such as
elbow flexion–extension, preferably with the eyes
shut. We can selectively focus our attention on the
elbow before moving it. The awareness that the
elbow is held at a particular angle is called position
sense. As the elbow is moving, we now become
aware of the direction, changes in velocity and
acceleration–deceleration of the limb – a movement
sense. There is also a sense of effort in moving and
the limb’s own weight (Ch. 2).2,3,4 These elements
of proprioception will be termed here as primary
proprioceptive ability.
Now, let’s make this a little more complex. With
the eyes still shut, try to touch the tip of your nose
with the index finger. Your ability (or inability)
to accurately reach that target depends on the inte-
gration of sensory information from the whole
arm, head and position of the nose; plus all the infor-
mation from the rest of the body. This is spatial
orientation ability: the capacity to identify the position
and direction of movement of any part of the body.

Finally, imagine standing, balancing on one leg and
thenmaintaining the same touch-the-nosemovement.
Your success depends on the capacity of the motor
system to integrate several sources of exteroceptive
(visual, vestibular and auditory) and proprioceptive
information. This level of sensory ability will be
termed here as composite sensory ability.

Hence, proprioception can be categorized accord-
ing to complexity, from low to high level, as following:

• Primary proprioceptive ability (position,
movement and effort sense)

• Spatial orientation

• Composite sensory ability.

It should be noted that this classification is
artificial and that all these abilities co-exist in nor-
mal functional movement. However, this sensory
ability model has some clinical value – it can be
used as a predictive tool to understand potential
sensory losses in relation to various conditions. It
can also provide a useful clinical procedure for
testing more obvious losses and integrating sen-
sory with motor rehabilitation. The assessment
and challenges of proprioception are described in
Chapter 13.
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Change in proprioceptive acuity

Proprioceptive acuity refers to a change in the abil-
ity of the individual to detect various aspects of
movement. It can be the threshold to rate and
amplitude of movement; for example, if the move-
ment is very slow the individual may find it hard
to identify whether the limb is moving at all and
in which direction.5 Acuity is also the ability to
detect a joint’s angle when maintained in a certain
position or dynamically during movement.

Proprioceptive acuity depends on the intactness
of the sensing apparatus (mechanoreceptors and
their peripheral to central pathways) and the intact-
ness of central integration/possessing of sensory
information.6 Generally, in musculoskeletal injury
the damage is to the proprioceptive apparatus in
the periphery. Later it may be accompanied by
adaptive central reorganization. Conversely, in cen-
tral nervous system (CNS) damage, the peripheral
proprioceptive apparatus is fully intact but the cen-
tres that process the information are damaged.
Unrefined movement

Fig. 4.2 � Damage to proprioceptive apparatus peripherally
combined with nociception will result in unrefined motor
output.
Proprioceptive changes in
musculoskeletal injury

Proprioceptive changes in musculoskeletal injuries
often manifest as diminished acuity in position and
movement sense.7–10 These changes together with
42
nociception often result in unrefined motor control
(Fig. 4.2). Proprioceptive deficits have been demon-
strated in the ankle,11 knee,12–15 shoulder,16 temporo-
mandibular joint,8 lower back,17–20 and neck
(whiplash injuries).21–23 Chronic neck pain was even
shown to reduce acuity in upper limb (elbow, shoulder
and spatial orientation of whole arm), suggesting a
central processing change in sensory integration.24–26

Various degrees of musculoskeletal injuries, surgical
intervention and degenerative joint disease have been
shown to have local effects on proprioception.27–34
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The clinical significance of proprioceptive losses is
not clear. For example in severe neck pain conditions
the losses are often less than 2.5� of error when com-
pared to asymptomatic subjects.20,35,36 With more
mild conditions, often the differences between
symptomatic and asymptomatic subjects are less that
1� in proprioceptive error.22,37–41 It should be noted
that even asymptomatic individuals can demonstrate
up to 5� in proprioceptive error.38,41

Short-term, reversible proprioceptive
changes

There is a common experience that following
intense exercise we tend to feel unsteady (wobbly
legs) and clumsy in the execution of skilled move-
ments. This unrefined movement may be partly
associated with the exercise-induced muscle dam-
age and the effects it has on proprioception. Such
proprioceptive changes are self-limiting and are
expected to recover within minutes in the case of
fatigue, or longer in the case of delayed muscle sore-
ness after exercise.10,42–48

The changes in proprioception are generallymodest.
For example, immediately after eccentric quadriceps
exercise there is a force drop of 28%, accompanied
by 4.8 degrees of error. Following concentric exercise,
there is a force drop of 15% and matching errors of 3.7
degrees.43 On the other hand, proprioceptive acuity
may increase during normal warm-up where there is
no fatigue or muscle damage.49

Several factors may contribute to this transient
change in proprioception. Muscle swelling and sar-
comere damage may influence the ability of the
muscle receptors to effectively detect movement
(Fig. 4.3). Furthermore, ischaemia or inflammation
is known to change the chemical environment of
Receptor Axon

TissueInflammation

Fig. 4.3 � Changes in the chemical environment of the
mechanoreceptor may change its sensitivity in detecting
movement.
the muscle receptors and their sensitivity (group
III and IV chemosensitive afferents and the spindle
afferents via spinal mechanisms).50–54

There may be also central reasons for transient
changes in acuity. During eccentric exercise the
efferent motor command may increase to compen-
sate for the effects of fatigue. The proprioceptive
errors are due to inaccurate comparison between
predicted and actual feedback from the muscle
(see comparator system, Ch. 2).43

Generally, these acute transient changes in pro-
prioceptive acuity have little clinical implications
and are unlikely to be affected by any special reha-
bilitative approach. In long-term injury or ongoing
painful conditions they may become more perma-
nent and, therefore, more relevant to rehabilitation
(see below).

Where transient proprioception may be impor-
tant is in sports management, particularly in the area
of injury prevention during training and competition.
During fatigue skillful movement may deteriorate,
due to a combination of several factors, including
reduced proprioceptive acuity (also reduced motor
control and psychological-cognitive factors).55–57

These multidimensional factors may place the ath-
lete in movement patterns that could predispose
them to injury.58–61 The management of the athlete
in this situation would involve the organization-
behaviour of the individual, which is further
discussed in Chapter 8.
Long-term proprioceptive changes

Long-term reversible and irreversible proprioceptive
changes can be observed in musculoskeletal injuries.
Several factors can combine to generate these
changes:

• Damage to the receptors and/or their axons

• Structural-physical changes of the tissue in which
the receptor is embedded

• Central sensory reorganization

• Pain-proprioception competition.

Many receptors and their axons have a lower ten-
sile strength compared to the tissues in which they
are embedded. Physical trauma to tissues and nerve
trunks can damage the mechanoreceptors and their
axons resulting in localized proprioceptive losses
(Fig.4.4A).14,15,31,61–64 These proprioceptive defi-
cits can be very small and their clinical significance
is unknown. For example, in cruciate ligament tears
it can be less then 1.0 degree of movement.65
43
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Fig. 4.4 � Local changes affecting the proprioceptive
apparatus. A, Damage to the receptor or its axon.
B, Changes in the tissues in which the receptor is embedded.
C, Torn fibres will reduce the receptor’s ability to detect
mechanical changes.
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Another potential mechanism that may lead to
long-term sensory losses is structural/physical
change in the tissues in which the receptor is
embedded. The proprioceptive apparatus may be
fully intact, but its ability to detect movement
may be hindered by changes in the surrounding tis-
sues, in the form of adhesions or shortening
(Fig. 4.4B). Furthermore, proprioceptors embedded
in tissues that are torn or detached will lack the
mechanical stimulation needed for the detection of
movement (Fig. 4.4C).

Central sensory reorganization in response to
injury may also influence long-term changes in pro-
prioception. Reduced physical activity may result
in sensory “disuse”, affecting the whole sensory con-
tinuum from the receptors to their central represen-
tation in the brain. For example, in the periphery,
immobilization can lead to muscle spindle atrophy
and changes in its sensitivity and firing rate.66 More
centrally, it has been shown that tactile impoverish-
ment and sensorimotor restriction of an animal’s
paw causes deterioration in the cortical sensory
map representing that area.67
44
The reversal of disuse may be observed after
reconstructive capsular and ligamentous surgery.
Once repaired, proprioception tends to recover over
a period of several months.68–71 This partly could be
due to the patient’s returning to a more normal and
pain-free use of the arm that promotes normal cen-
tral reorganization of proprioception.73

Central sensory reorganization can produce
surprising findings. In individuals who had anterior
cruciate ligament (ACL) reconstruction or shoulder
injury, decreased proprioceptive ability was present
in some measurements in the affected, as well as in
the uninjured side.73–77
Competition in sensory information:
nociception vs. proprioception?

Changes in proprioceptive acuity after injury could
be due to a competition between nociception and
proprioception for central “attention,” occurring at
reflexive and cognitive levels.50,51,53,77

This competition in sensory information can be
likened to a bottleneck effect. A vast array of
information from the periphery floods the CNS.
The system is incapable of attending to all these
inputs and, therefore, only information which is
relevant or important makes it through to atten-
tion. Pain, which may be interpreted as being the
most important, will have dominance over pro-
prioception in passing through this bottleneck
of information.

There are several studies which support this
sensory competition model. Experimental pain
induced in muscle and subcutaneous tissues was
shown to significantly impair passive movement
detection in the pertaining joint.79 Proprioceptive
acuity has been shown to reduce when experi-
mental pain was induced in the muscles of the
lower leg80 and, likewise, superficial experimental
pain applied locally to the neck diminished neck
proprioceptive acuity.81 Such sensory competi-
tion was also demonstrated in postural stability.
When a painful heat stimulus was applied to the
skin of the calf it resulted in greater postural
unsteadiness.82

Pain-proprioception competition is also evident in
musculoskeletal injury. Patients with painful ACL
damage seem to have larger proprioceptive deficits
than those who have pain-free ACL damage.83 It was
also demonstrated that proprioception improves after
6 months following shoulder decompression surgery
where only the inflamed and painful subaccromial
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bursa was removed, i.e. proprioception won when the
competition (pain) was taken out.71

Another possibility for pain-proprioception
competition may occur, more centrally, as an
adaptive process. This phenomenon may be
related to the principle that the more we focus
on an experience such as a physical sensation or
movement, the more it drives central adapta-
tion.84–88 In this scenario the individual’s focus
on their pain may facilitate pain imprinting while
displacing normal sensory-motor central represen-
tation. For example, in chronic lower back pain
there is a displacement of the cortical sensory-
motor areas representing the lower back89 and,
indeed, this condition is often accompanied by
diminished proprioceptive acuity.16–19

Proprioceptive changes in central
nervous system damage

CNS damage could also lead to sensory losses.
Depending on the extent and location of damage,
all levels of sensory abilities may be affected. This
is in contrast to musculoskeletal injuries where the
primary proprioceptive abilities are largely affected.
Another important difference is that in CNS dam-
age the peripheral sensory apparatus is left intact,
which provides a potential for peripheral-to-central
recovery (Fig. 4.5). This however depends on the
extent of the damage, neural repair and central re-
organization (Ch. 10).90–94
Integration-organization

Integration-
organization

Unrefined movement

Motor Motor Sensory

Fig. 4.5 � Central damage can affect proprioception. In
contrast to musculoskeletal injuries the proprioceptive
apparatus remains still intact.
Proprioceptive recovery

Proprioceptive losses will partially or fully recover
during a period of several months following mus-
culoskeletal injury. The recovery of proprioception
ultimately relies on peripheral and central pro-
cesses: in the periphery, through the degree of
repair of the receptors and the tissue in which they
are embedded, and centrally, through the adapta-
tion and reorganization of the sensory pathways
and cortical maps.

There is some evidence that mechanoreceptors
can partially regenerate following tissue damage. Such
regeneration has been shown in muscle spindles, their
axons and efferent motor supply and in skin mechan-
oreceptors (Fig. 4.6).63,64,95–97 In animal models
there has been even some evidence for sprouting of
new muscle and skin receptors, which took place
within 6 weeks of injury.64,97,98 In muscle, the suc-
cess of regeneration depends on the extent of internal
damage and scarring and the duration of repair.

Being active is important for sensory regeneration.
Muscle hypertrophy in response to exercising is asso-
ciated with morphological and physiological changes
of the muscle spindle. Such changes will increase
the spindle’s sensitivity to detect movement.99–101

Centrally, exercise encourages the sensory neurons
to produce growth factors that stimulate axonal
regeneration and synaptic connections (Fig. 4.7).102

The recovery of the tissue in which the receptors
are embedded is also important for propriocep-
tion.103 Naturally occurring healing or surgical repair
could lead to normalization of the tissue’s properties
and consequently to better detection of movement
by the receptors embedded in them. Some evidence
of such recovery was demonstrated following spinal,
ankle and shoulder surgery.68–72,104 It is possible that
in some of these surgical repairs the tensions in the
capsule had been restored, consequently re-establish-
ing the receptors’ detection ability in the previously
torn fibres (this does not occur in every surgical
intervention, e.g. cruciate ligament).74 This suggests
that passive or active movement may be advanta-
geous for such sensory regeneration. It will optimize
tissue repair, reduce oedema and scarring as well as
optimize the mechanical environment necessary for
receptor regeneration/adaptation.105

The feedback from the spared receptors in the
area of damage as well as from receptors from
undamaged areas could also account for the re-
covery of proprioception (rather than through an
45
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Fig. 4.6 � Muscle spindle regeneration after damage to the nerve trunk. A, Normal spindle afferents (36 terminals).
B, Regeneration after 8 weeks (36 terminals). (From Barker D, Scott JJ 1990 Regeneration and recovery of cat muscle spindles after
devascularization. J Physiol 424:27–39, with permission).
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Fig. 4.7 � Exercise encourages the release of growth factors by sensory neurons that stimulate axonal regeneration and
formation of new synaptic connections. A and B, Sedentary animal. C and D, Three days exercised. E correlation between
distance run and normalized axon length (From Molteni R, Zheng JQ, Ying Z et al 2004 Voluntary exercise increases axonal regeneration
from sensory neurons. Proc Natl Acad Sci USA 101(22):8473–8478 (Fig. 1), with permission.)
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improvement of proprioception from the area of
damage itself).106,107 In this scenario, the spared
proprioceptors become more dominant and capture
the lost central representation of the damaged
receptors (Fig. 4.8). Such loss and recapture of
46
somatosensory cortical territory has been observed
during denervation and re-innervation of peripheral
nerve and in the proximal limbs of amputees
(Ch. 6).108 The other possibility is that the recep-
tors that were damaged gradually regain their lost
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Fig. 4.8 � Mechanisms in proprioceptive recovery.
A, Damage to the receptors or the tissue in which they are
embedded could lead to loss in their cortical representation
and capture of that area by the saved receptors. Some
proprioceptive recovery may be possible by the system
becoming more dependent on the saved receptors and their
enlarged cortical representation; even if there is no further
recovery of the damaged receptor or tissue. B, Gradual repair
of the receptor or the tissue in which it is embedded may help
recapture its lost cortical representation and improve overall
proprioception from the area of injury.
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central territory as they regenerate and become
more functional. Here too we can assume that
active movement is the drive to sensory-motor plas-
ticity. This was demonstrated in stroke patients.
Functional rehabilitation brought about improve-
ment in motor control that correlates with reorgan-
ization in the somatosensory cortex.109

In can be concluded that aftermusculoskeletal inju-
ries or CNS damage there is a potential for proprio-
ceptive recovery. The studies suggest that recovery is
a mix of repair and adaptation processes that occur
throughout the sensory system.110 As such, proprio-
ceptive recovery is expected to take several months
rather than a few weeks. Often such intrinsic body
processes can be optimized but not speeded up.Move-
ment may help this optimization by facilitating tissue
repair and providing the drive for central sensory-
motor adaptation.110 However, the degree and time-
scale of recovery may be difficult to predetermine.111
Clinical note
• Movement can help optimize repair and adaption

of the proprioceptive system.

• Movement will also help the repair and adaption
of the tissues in which the receptors are
embedded. This may help to re-establish the
receptors’ ability to detect movement.
Does proprioceptive loss lead to
further damage?

Proprioceptive loss in the long-term is believed to
contribute to muscular atrophy, recurrent joint inju-
ries and eventually to progressive degenerative joint
disease.46 In this model, diminished feedback will
result in dysfunctional movement and joint instabil-
ity, which will eventually lead to progressive joint
damage. So far this model has been demonstrated
only in one animal study.112

Functional instability of the ankle is a condition
which can be used to examine this theory. It is well
established that a combination of sensory-motor losses
at the anklemay predispose the individual to recurrent
injury.11Will this recurrent injury predispose the indi-
vidual to progressive ankle joint damage? In a 20-year
follow-up study of patientswith chronic ankle instabil-
ity, degenerative changes were observed only in six of
46 ankles. There was no correlation between persis-
tent instability and joint degeneration.113

Another area that could help us to explore the
proprioceptive further damage model is delayed-
onset muscle soreness (DOMS) after exercise. This
transient muscle condition is accompanied by dimin-
ished proprioceptive acuity.10,42–48 Most individuals
who experience DOMS will continue to exercise
without acquiring any further damage/injury. If pro-
prioceptive loss were to lead to injury, continuing
to exercise would initiate a vicious cycle that would
result in progressive damage.
47
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Finally, in a recent prospective cohort study with
2–3 year follow-up the lumbar spine position sense
was evaluated in 292 athletes. No significant differ-
ences in the repositioning errors or motion percep-
tion threshold between athletes with and without a
history of lower back injury or between those who
did and did not get injured during the follow-up.135
48
Clinical note
There is no evidence yet that proprioceptive
losses predispose the individual to gradual tissue
damage. Perhaps large magnitude proprioceptive
losses are required for this chain of events to occur.
Are there proprioceptive-specific
exercises?

Patients who exhibit proprioceptive losses are often
prescribed specific proprioceptive exercise. Is there
a distinct kind of exercise and would it be better
than any other functional activity?

Let’s take a look at the body – our ankle mechano-
receptors will be stimulated equally well whether we
exercise on a wobble board or jump around the court
while playing tennis. Indeed, the improvements in
function or reported reduced incidents of injury after
proprioceptive training are often attributed to
enhancing motor control (e.g. synergistic control or
coordination) rather than selective improvements in
proprioception.74,76,106,107,114–117

Yet, some studies do show that in musculoskeletal
injuries there are some direct and local improve-
ments in position sense following “proprioception
training”118–120 However, it seems that propriocep-
tion improves regardless of the type of exercise used.
For example, proprioceptive acuity in the shoulder
seems to improve with isokinetic exercises, lifting
weights, exercises which mimic the movement of
lifting weights, push-ups, arm movement using a
resistance band or throwing a weighted ball.121–124

If you feel baffled by all these findings, you should.
How can specific exercises improve proprioception
while the normal daily or sports activities of the indi-
vidual do not? It could be that we becomemore atten-
tive to proprioception rather than improving it.
Imagine a simple task like writing. Once learned it
becomes completely autonomous and out of our
awareness. The focus of writing is external towards
the goals ofwriting. Ifwewere to increase the duration
of writing the awareness and proprioception acuity of
the hand will remain unchanged. So doing more of
the same is unlikely to change proprioception. Now
imagine that we were given a novel task that forced
us to concentrate on our hand, say knitting. We have
to become more aware of the fine hand movements
of this new complex task. If we were to test proprio-
ception of the hand at that pointwemay find that acu-
ity has increased. This has come about because we are
more attentive and focused on our hands, rather than
by an improvement in proprioception. An analogy
can be experienced by focusing to listening with your
right ear. You will become more aware of the sound
on that side; however, your hearing has not improved.
Interestingly, it is claimed that elderly Tai chi practi-
tioners have better proprioceptive acuity than their
age-matched runners or swimmers and those who are
non and exercising.125,126 Is it because Tai chi uses
more focus and attention on the body (see Internal
and external focus and learning, Ch. 5)?

Another possible mechanism for increased acuity
may be related to the comparator system. When a
new activity is introduced the comparator system
becomes more engaged in error detection. The
sense of effort, which is a part of this system, may
consequently become more co-active. It could be
that the increases in the sense of effort will tempo-
rarily enhance proprioceptive acuity.

The short of it is that as long as the individual is
doing a novel exercise, awareness of proprioception
may increase and give the false impression that the
proprioception is improving. It would be interesting
to see what would happen to proprioceptive acuity
after several months when that exercise is no longer
novel, and is autonomous and boring.
Clinical note
• There is no specific proprioceptive exercise.

All activities are likely to be equally effective.
Proprioception and prevention
of injury

There is a commonly held belief that proprioceptive
exercise or training can improve proprioceptive acu-
ity and, therefore, prevent sports-related injuries.127

The exercises that are prescribed often aim to chal-
lenge postural stability; they are performed at
higher speeds and involve sudden unexpected per-
turbations, such as exercising on a wobble board
(ankle disc exercise).117
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In sports, most injuries occur during very rapid
movements. Under such conditions the foot–ground
impact force takes less than 50 ms to reach its peak
magnitude and ankle inversion can reach 17� in as lit-
tle as 40 ms. The swiftness of these events does not
leave sufficient time for even the shortest spinal
reflexes to execute an adequate motor response to
prevent injury.128 This lag in proprioceptive transmis-
sion time is immutable; it cannot be shortened by
exercising. From a proprioceptive perspective, exer-
cise cannot offer protection against injuries that occur
during movement at medium to high velocities.

Furthermore, proprioceptive exercises on a wobble
board are relatively slow, in the range of several
hundreds of milliseconds. They are, therefore,
unlikely to provide an optimal sensory training to pro-
tect the ankle against injury; even at medium move-
ment velocities.128 (A Cochrane systematic review
suggests only limited evidence for the efficacy of wob-
ble board use for prevention of ankle injury.)129

Proprioceptive acuity and
passive and active movement

Are passive manual techniques useful for reha-
bilitation of proprioceptive or motor control? Propri-
oceptive acuity tends to increase when the
Physical stimulation
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Fig. 4.9 � Proprioceptive acuity tends to rise when the
physical stimulation is more dynamic and active (circles
denotes excitation of receptor).
movement is more dynamic and active rather than
passive (Fig. 4.9).130,131 When a subject’s joint is
moved passively, the ability to distinguish the finger’s
position is reduced compared to when the subject
slightly stiffens their finger during the move-
ment.2,132,133 This is reflected in more extensive cor-
tical activity during active, in comparison to passive,
movement.134 It has also been proposed that the
superiority of position sense in active motion is
related to the efferent flow and the sense of effort
(Ch. 2).130 In active movement feedback is derived
from both proprioception and this internal feedback,
whereas passive motion tend to only stimulate the
feedback portion of the motor system (Fig. 4.10).

This difference between active and passive motion
was demonstrated in a recent study. Continuous active
motion was compared with continuous passive motion
for recovery of proprioception immediately after ACL
reconstruction (unfortunately no control).135 Signifi-
cantly better resultswere obtained in the activemotion
group (4.2 � 1.6 vs. 1.9 � 1.2 degrees).
Summary points

• The sensory-motor system is a functional unit.
There is no need to specifically target
proprioception.

• Proprioceptive ability can be classified according
to complexity from primary proprioceptive
ability, spatial orientation ability to composite
sensory ability.
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• Proprioceptive acuity can be affected by
peripheral and/or central causes.

• Musculoskeletal injury can affect the
peripheral proprioceptive apparatus while CNS
damage will affect central processing of
proprioception.

• Recovery of proprioception involves
both reparative and adaptive processes. As such,
it may have its own inherent recovery period
that may take several weeks or months to
complete.

• Promoting normal functional movement will help
proprioception by facilitating positive sensory-
motor reorganization/adaptation.
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• Recovery of proprioception is important for
optimising movement control. It is still unclear if it
provides protective function against future damage.

• There is no evidence that proprioceptive losses
will result in long-term degenerative changes.

• Many of the proprioceptive changes seen after
musculoskeletal injuries are very small and may
have little or no impact on a person’s
functionality. It seems that the body can tolerate
such minor changes.

• All exercises are proprioceptive exercises.

• Active movement is better than passive
movement in stimulating proprioception.

• Message to the patient – “keep on moving”.
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5
Motor adaptation
Every day we take actions that result in movement
and behaviour changes. This can be the consequence
of being exposed to new experiences, learning a new
task or recovering motor losses after an injury.
However, we clearly don’t retain all that we have
experienced. We seem to remember or learn only
certain events. Some physical actions become our
movement repertoire, while others seem to disap-
pear in time. Similarly, how can we be certain that
rehabilitation will result in effective and lasting
motor changes?

To answer this question we need to examine how
we naturally attain lifelong motor changes. It seems
that there are certain factors within our behaviour
that are important for facilitating adaptation in the
neuromuscular system. These factors can be viewed
as a form of code for neuromuscular adaptation.
Rehabilitation programmes that contain these code
elements are more likely to be effective in
recovering motor losses and promoting long-term
motor and behavioural changes.
The code for neuromuscular
adaptation

The neuromuscular adaptation code elements can
be identified by observing a person’s behaviour dur-
ing a motor learning situation. For example, in order
to learn to play the piano the individual has to be
aware of the score, the relationship of the keys to
the scales, placement of the hand on the keys and
so on. It involves physical, active practice at the key-
board. The person will continuously monitor their
mistakes and correct them; often playing the same
scales in numerous repetitions. Furthermore, we
are intuitively aware that lifting weights at the
gym will not improve playing the piano. In order
to play the piano one has to practise playing the
piano. From this example five basic adaptation code
elements can be identified (Fig. 5.1):
1.
 Cognition
2.
 Being active
3.
 Feedback
4.
 Repetition
5.
 Similarity principle.

It should be noted that motor learning and adapta-
tion share the same neurophysiological mechanisms.1

However, rehabilitation following musculoskeletal
injuries or pain conditions is not about learning a
novel motor pattern. Most patients are fully aware
of what movement they have to perform but are
unable to physically carry it out. Their inability is
often due to a mix of physical losses and an underly-
ing motor reorganization or dysfunction (Chs 9–12).

Adaptive code 1: cognition

In the context of neuromuscular rehabilitation cog-
nition is the mental process in which the patient is
aware of and attentive to the movement experience,
understands its aims and goals, and is able to make
decisions and organize a response. It is also the pro-
cess of thinking, rationalizing and memorizing.

The role of cognition in neuromuscular rehabili-
tation can be demonstrated by an example. A fell
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Fig. 5.2 � The transition from cognitive to autonomous phase
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Fig. 5.1 � Experiences that contain the five code elements
are more like to promote adaptive changes within the
neuromuscular system resulting in movement and
behavioural changes.
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runner who trained on rough terrain found that she
was trippingwith increasing regularity. Consequently
she began to train on flat paved surfaces. She was
aware that something had changed in her control,
but could not understand her progressive inability.
During challenged balance she demonstrated gross
postural control losses that were later linked to recur-
rent severe bilateral ankle sprains. Patients often
experience such progressive deterioration of perfor-
mance without being able to understand their under-
lying causes and, consequently, how to rectify them.
The role of cognition in this case was to inform the
patient about her condition, bring attention to the
specific losses and work out, with the patient, a
management that would challenge these losses.

Neuromuscular rehabilitation is about changes in
motor patterns or movement behaviour. Cognition
is a potent modifier of behaviour and, therefore, of
motor control. A change in movement behaviour
can be as simple as bringing attention to the way a
person performs a movement and correcting it ver-
bally or by demonstration. For example, a teenage
tennis player developed medial knee pain over a
period of several weeks. It was brought to his atten-
tion that this injury could be related to a movement
pattern which exerted a medial stress on the knee.
He immediately recognized a newly acquired side-
stepping pattern in which he would adduct and drag
the non-weight-bearing leg on the ground. He also
knew the solution (not to do it) and was aware
how to implement the change. He required no fur-
ther treatment and rapidly recovered from the
injury (see Task-behaviour sphere, Ch. 8). The
whole management took place within the cognitive
dimension.

Cognition and phases of learning

We all have the experience that when we practise a
new movement after a while we don’t have to think
56
how to carry it out: it seems to occur just by “want-
ing” to do it. This phenomenon represents a phase
in motor learning where there is a transition from
a cognitive phase to a subconscious autonomous
phase (Fig. 5.2).2

The early, cognitive stages of learning are charac-
terized by the high levels of intellectual activity
needed to understand the meaning of the informa-
tion, the nature of the task and how to refine it.
The individual may be aware of doing something
wrong, but they are incapable of fully understanding
and improving it.2

As the individual becomes more proficient in
performing a skill, it becomes more “automatic”
and less under conscious control. In this phase, the
skill is stored as a motor programme and becomes
more robust to interference from other ongoing
activities and environmental disturbances. Hence,
in the cognitive phase it may be more difficult to
multitask, whereas this becomes easier in the auton-
omous phase.2 Autonomous activity is not totally
subconscious and some elements of the movement
will remain in the individual’s awareness (Fig. 5.3).2

The transition between the two learning phases
can often be observed in rehabilitation. Initially,
the patient will perform a movement that is inaccu-
rate and requires intense concentration. After sev-
eral sessions the movement patterns become more
skilled and subconscious. The hallmark of the tran-
sition into the autonomous phase is when the
patient is no longer attentive to the movement and
is able to multitask, e.g. simultaneously conversing
with the therapist. This should be encouraged as it
may help to facilitate the transition into the autono-
mous state.3

Often a dysfunctional movement may become the
habitual autonomous pattern. For example, some
patientsmay be unaware of the compensatory/coping
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strategies they use to compensate for control losses.4

In these situations the motor dysfunction is trans-
ferred into the autonomous phase and becomes resis-
tant to change. To reverse this, the patient needs to
be brought back to the cognitive phase and retrained
in the correct movement pattern (see Task behaviour
sphere, Ch. 8). Once they are able to execute the
movement correctly, the rehabilitation would aim
to assist its transition back to the autonomous state.
Clinical note
Generally, the aim of neuromuscular rehabilitation
is to bring motor control to an autonomous state
where it becomes part of the habitual movement
repertoire.
“Active cognition” and “passive
cognition”

There is a common experience that whenwe are driven
as a passenger to a new address we may find it difficult
to remember the route. However, having to actively
learn the route tends to improve the memory of it.

There seems to be a difference in learning
between being “actively” or “passively” aware. Sub-
jects tend to learn a motor task more effectively
when they are given more choice over how to prac-
tise and how much feedback to receive (“active cog-
nition”).5 If they are given a pre-organized blocked
training programme and predetermined feedback
they tend not to learn the movement as well
(“passive-cognitive”). This phenomenon has been
demonstrated in maze training. One group received
training that restricted their movements to the cor-
rect path, so that no choice was made (passively-
cognitive). Another group was given choices while
moving through the maze (actively-cognitive).6 The
maze learning of the “choice” group was greatly supe-
rior to that of the “no-choice” group, although both
forms of guidance were cognitive.
Clinical note
Motor learning could be optimized by enabling the
patients to make decisions and enabling them to
have control over the scheduling and sequencing
during rehabilitation.7
Selective attention and memories
of doing

During rehabilitation patients are often guided to
focus on the particulars of their movement or goals
of their actions. This focus (selective attention)
helps the sensory-motor system to adapt and mod-
ify our behaviour.8 Events which are out of atten-
tion will often be forgotten over time. In some
remarkable way attention drives sensory-motor
adaptation. The analogy is in listening to music and
remembering only the melody line played by the
lead instrument. Although we can hear all the other
instruments, only the ones we focus on can be
remembered. This phenomenon can be observed in
(blind) Braille readers. The selective focus on their
reading index finger results in specific enlargement
of the finger’s cortical representation.9

Generally, there is a limited ability to focus on
more than one stream of information or actions at
a time (try reading the next paragraph and count
backwards from ten to zero).10–12 In musculoskele-
tal conditions pain itself may become the focus of
attention and, therefore, competes with other
attention demands.10
Internal and external focus and learning

When walking across a room full of strangers most
individuals have had the experience of becoming
very aware of their own body and movement. As
this happens, momentarily, we don’t know what to
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do with our arms and the whole process of walking
seems to become more awkward and less skilled.
This experience may be due to a phenomenon that
occurs when there is a shift of attention from the
goal of movement to the details of how to do it.

When the focus of attention is directed to the
goals of the movement it is termed external focus.
When the focus is on the internal workings of the
body or the details of the action it is often referred
to as internal focus.5 During the early phase of
learning attention is drawn internally to the particu-
lars of the action – the technique, the position of
the hand; the pressure used, etc.13 This focus shifts
externally as the individual becomes more skilled in
performing the movement.

For a skilled person, learning improves if training
uses external focus directed to the goals of the
movements rather than to the details of the actions.
For example, there is greater accuracy in tennis
serves and football shots when the subjects use
external-focus rather than internal-focus strate-
gies.14,15 Conversely, skilled performance can
degrade if an internal focus is used, such as focusing
on the hand during tennis serves.5,16 Even conscious
tensing of the trunk muscle (internal focus) has
been shown to degrade postural control.17

The use of internal and external focus during
rehabilitation may depend on whether the patient
is an “unskilled injured” or “skilled injured”. The
unskilled injured is a novice who in the process of
acquiring/learning their skills has been injured.
In this scenario, rehabilitation should comprise
internal- and external-focus principles, since the
patient still has to learn the novel movement,
which requires some internal focus. In contrast,
the “skilled injured” are experienced in the task,
but are physically unable to perform it. An exter-
nal-focus approach may be more beneficial for this
group since they don’t have to learn the movement
from scratch.

This does not exclude the use of both focusing
approaches for the “injured skilled”. Skilled move-
ments degrade over time, especially if the individual
has been unable to perform normal movements due
to a long-term injury – a sort of “motor forget-
ting”.18 This can be seen in patients who walk with
a limp long after they have recovered from their
injury. In this condition, it may be helpful to revert
temporarily to an internal-focus approach, drawing
attention to the particulars of the walking cycle,
such as the heel strike. Internal focus strategies
may be also be beneficial for patients with central
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nervous system (CNS) damage.19 (Although in my
clinic I found that I tend to gravitate away from using
internal focus with CNS-damaged patients).19,20

It has been shown that the focus of attention
during learning is different in children and adults.21

Children tend to favour internal focus whereas adults
tend to focus more externally on the task. The differ-
ence could be due to the fact that children are less
motorically experienced, whereas adults are able to
draw on their previous motor experiences.

Extreme internal and external focus

How far internally can a person afford to focus before
it becomes detrimental to learning? Some movement
rehabilitation approaches promote internal focusing
on particular muscles or muscle chains: a form of
“extreme internal focusing”. In these approaches the
muscle itself becomes the focus or movement goal.
For example, in core-stability training transversus
abdominis is often the focus of rehabilitation.22 Also
currently in fashion is a focus on the improvement
in the efficiency of the scapular stabilizers for shoul-
der conditions and the enhancement in the control
of the deep anterior cervical muscles for patients
suffering from chronic neck pain.

In the last decade several studies have examined
this issue. In one such study participants performed
basketball shots using either internal focus (focus on
wrist motion) or external focus (basket).23 Com-
pared to internal focus, the external group had bet-
ter accuracy and lower EMG activity of the biceps
and triceps muscles. This suggests that an external
focus of attention optimizes movement economy.23

Even focusing on the effort of the movement
(internal) will result in inferior learning when com-
pared to focusing on the goal of the movement
(external).24

In a study using balance as an outcome measure,
participants were instructed to focus their attention
on markers which were placed at different distances
from their body. It was found that the postural con-
trol improved the further away the focus from the
body was.16 In another study, participants balanced
on a stabilometer while holding a tube horizon-
tally.15 In one group the tube was empty while in
the other the tube contained a ball that had to be
kept central. Participants were instructed to either
focus on their hands (internal focus), or on the
empty tube (external focus) or on a sort of “super-
external” focus on the ball in the tube. In both
experiments, the external focus groups demon-
strated more effective learning and transfer than
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the internal focus groups, both in learning the tube-
ball skill and the balancing task itself. However, the
super-external had the best learning outcomes both
in the tube and the balancing tasks. This phenome-
non of super-external focus was demonstrated in
stroke patients.25 Two groups of patients trained
in walking, but one group had to play with a ball
while walking. The group with the extra-external
task had greater improvement in walking than the
group practising the single task of walking.

More recently this phenomenon was demon-
strated in re-training postural stability after lateral
ankle sprain. The external focus (“keep your balance
by stabilising the platform”) was found to be more
effective than the internal focus (“keep your balance
by stabilising your body”).26 Furthermore, the inter-
nal focus group did not improve their balance at all.27

Interestingly, Eastern movement traditions, such
as tai chi and yoga, often use internal focus strate-
gies for learning and performance of movement.
Yet, it was demonstrated that tai chi training
improves balance,28 as well as coordination during
gait initiation.29 It was as effective as functional bal-
ance and leg strength exercise (mostly external
focus) in reducing the incidents of falling in pre-frail
individuals.30
Clinical note
Physical practice

Mental practice
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Neuromuscular rehabilitation should move away
from training approaches that focus attention on
specific muscles, muscle chains or joints. Movement
should be practised as a whole with an emphasis on
external focus and movement goals. This approach
is applicable to the majority of patients who receive
rehabilitation: they know what to do but can’t do
it (“skilled injured”). Patients with central motor
losses may benefit from a mix of internal- and
external-focus strategies.19,20 Probably, a pragmatic
approach is best – see what the patient can cope
with or what seems to be more beneficial
(constructive tinkering in the face of uncertainty).
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Fig. 5.4 � Mental practice can enhance motor learning.
Mental rehearsal of some tasks can be almost as effective as
physically practising it. (From: Rawlings EI, Rawlings IL, Chen CS
et al 1972 The facilitating effects of mental rehearsal in the acquisition
of rotary pursuit tracking. Psychonomic Science 26:71–73.)
Adaptive code 2: being active

Being active and physically practising the movement
is essential for neuromuscular adaptation. During
active movement, the whole of the motor system
is engaged. In contrast, during passive movement,
there is no efferent activity or muscle recruitment
(see The comparator system, Ch. 2).31 In order to
learn we need to make mistakes and correct them.
Without the efferent/motor component there are
no errors to correct and hence little, if any, learning.
This has been demonstrated in studies where vision
was distorted by special lenses. The ability of the sub-
ject to learn to correct arm movement was greatly
enhanced by active rather than passive arm move-
ment.32 Interestingly, passive movement rarely occurs
during normal daily activities.33 It can be inferred
from this observation that the motor system is well
accustomed to adapt to active rather than passive
movement.

These issues of passive versus active approach are
important in the context of neuromuscular rehabili-
tation and manual therapy. There are several disci-
plines that promote the belief that motor control
can be somehow manipulated by passive approaches,
for example spinal manipulation to normalize seg-
mental muscle tone.34–39 Such approaches are likely
to produce only brief, reflexive responses.

Facilitating motor learning with
mental practice

Despite the apparent need for physical practice,
motor learning can be enhanced by mental rehearsal
or by a demonstration of a movement (Fig. 5.4).40,41

Mental practice has been shown to improve
activities such as bowling, piano-playing and ball-
throwing (can air-guitarists play real guitars?). Even
movement variables such as force, endurance and
movement-time have been shown to improve with
mental practice.42–46 It was shown that in weight
training the physical practice group improved their
59
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strength by 30% while the mental practice group
increased it by 20%. This force increase by mental
practice is probably due to central motor reorganiza-
tion of force control rather thanmuscle hypertrophy.

Mental practice facilitates motor adaptation by
activating the motor system in much the same way
as physical practice.12 Imagining a movement acti-
vates cortical motor areas in similar patterns to
those activated during actual physical practice.47 It
may also engage minimally the muscles that are
involved in the imagined task but without producing
observable movement. When subjects are asked to
visualize hitting a nail with a hammer twice, the
electromyograph (EMG) trace demonstrates two
separate bursts of activity that are correlated with
the imagined movement.43 A similar process takes
place when we mentally recite words. The vocal
muscles are minutely activated, although no sound
is produced (Fig. 5.5).43

In the last few years mental practice has moved
from the motor learning to the rehabilitation sphere
and was shown to improve motor control in stroke
patients.48,49 This learning strategy may also be use-
ful for patients who have been immobilized or
unable to move due to musculoskeletal injuries.44

Adaptive code 3: feedback

Since we learn by making mistakes we need feed-
back to inform us how well we are achieving our
movement goals. Feedback can be intrinsic from
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proprioception or extrinsic in the form of verbal
instructions, visual demonstration or even physical,
tactile correction of movement by a therapist/
trainer.12,40,41

Intrinsic, proprioceptive losses will impair the
ability to correct, improve or learn new movement
(Ch. 2 & 4).32,50–54 Under such circumstances the
individual will often compensate for this loss by
shifting their attention to another sensory source,
e.g. to vision if proprioception is lost.

Extrinsic feedback plays an important role in
rehabilitation and is often referred to as guidance
or kinaesthetic feedback.55 It is often used to pro-
vide information about the details and “correctness”
of the movement (“hold the racket this way”), the
movement sequences (“swing it like this”) or the
quality in performance (“good shot”).

Generally, guidance is more effective if it pro-
motes an active gathering of information and
problem-solving by the patient. The outcome is
improved motor learning and a wider repertoire of
movement responses and learning that transfers read-
ily to other situations.56 For optimum learning, guid-
ance should be kept to the minimum and should be
rapidly reduced or fully withdrawn at the earliest
opportunity.5,11,57,58,59,60

Young children seem to depend on longer periods
of feedback during motor learning.61 This may be
due to their having a limited range of motor experi-
ences on which they can draw when learning.
Adaptive code 4: repetition

We all have had the experience that to master a cer-
tain skill we need to put in the practice
(Table 5.1).41 The frequency and the number of
repetitions in practising specific tasks will have
important implications for the recovery of motor
losses. Like a well-trodden path on a grass lawn,
actions that are repeated will pave stable and
enduring neuronal paths within the CNS.

Repetition together with selective attention plays
a crucial role in the transformation of motor experi-
ences from short- to long-term memory. This trans-
formation is a sequential process often described as
occurring in three stages; from short-term sensory
store to short-term memory and, finally, long-term
memory.2,12,62,63 Once a pattern has been stored
in the long-term memory it will not be lost in the
absence of rehearsal. Indeed, this can be observed
in activities such as swimming, cycling or playing a



Table 5.1 Estimated numbers of repetitions required to

achieve skilled performance

Activity Repetition for skilled
performance

Cigar-making 3 million cigars

Hand knitting 1.5 million stitches

Rug-making 1.4 million knots

Violin playing 2.5 million notes

Walking, up to 6 years 3 million steps

Marching 0.8 million steps

Pearl-handling 1.5–3 million

Football passing 1.4 million passes

Basketball playing 1 million baskets

Gymnastics performing 8 years’ daily practice
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musical instrument, activities that can be recalled
after many years without practice.12

The meaning and relevance to the individual,
motivational factors and the emotional value in the
experience also play a part in long-term memory.
Generally, experiences with strong personal or emo-
tional significance are more likely to transfer rapidly
to long-term memory.12 The extreme example of
this is often seen in individuals who have been in a
single traumatic experience, such as a road traffic
accident. They may develop long-term sensitization
and motor/behavioural changes in the absence of
any serious tissue damage.64

Repetition and practice of tasks is important
throughout the spectrum of neuromuscular condi-
tions seen in clinic.65 In stroke patients it was demon-
strated that repetition can result in positive gains in
performance even after one day of training.66
Adaptive code 5: similarity principle
and transfer

Following injury most individuals will take actions
to overcome their losses without any medical inter-
vention. These actions often resemble the move-
ment patterns which they have lost. A person with
a sprained ankle, who could not walk, will attempt
to walk and, likewise, an injured tennis player will
attempt to gradually return to playing tennis. This
is nature’s “gold standard” for recovery of move-
ment control – practise what you have lost (or what
you would like to gain). This natural phenomenon is
the basis of the similarity principle. It proposes that
learning is more effective when the training resem-
bles the task which is being recovered.40,67 The sim-
ilarity principle is one of the most important issues
in neuromuscular rehabilitation. It determines which
activities or movement patterns will be the focus of
treatment.

It seems that for learning or recovering particular
movement patterns the practice should be both
similar and within the context of the task. This
suggests that if a patient cannot balance during
walking, rehabilitation should focus on balance dur-
ing walking.30,68,69 Equally, if force losses impede
stair-climbing, than leg strength should be
challenged during that or a very similar activity.70

If the patient, due to lack of coordination, cannot
raise their arm to eat then rehabilitation should
focus on coordination within similar movement pat-
terns. Under these circumstances the individual
parts of the whole movement are being practised
simultaneously, i.e. the relationships between them
are being rehearsed.12 Practising movement which
is similar and within context is more likely to trans-
fer to related daily activities. Transfer is the ability
to take a motor experience from one situation and
apply it to another.67,71–73

Practising a dissimilar movement pattern or
movement that is out of context may reduce the
likelihood of transfer (Fig. 5.6). Imagine a patient
who has standing difficulties due to a balance prob-
lem. The treatment will be dissimilar if strength
exercises, such as standing knee squats, are used
to challenge standing balance.74 The strength chal-
lenge is the dissimilar element as it fails to chal-
lenge balance. However, it is still performed
within the context of standing. The rehabilitation
will be out of context if the training for balance is
practised sitting on a Swiss ball. In this situation
the balance is similar but movement is performed
whilst sitting and is, therefore, out of the context
of standing. The rehabilitation can be both dissim-
ilar and out of context, for example straight leg
rising (dissimilar) practised on the floor (out of
context).

The importance of similarity and context has
been highlighted by several studies. Resistance
61



?

Training

Similar but out of context

Dissimilar and out of context

Similar and in context

Goal of training

Fig. 5.6 � Similarity and context in rehabilitation.

Neuromuscular Rehabilitation in Manual and Physical Therapies
cycling or seated strength exercise will improve
strength in these activities, but have little or no
effect on walking for a stroke patient, because
strength may not be the control issue here.75,76

Strength training in sitting may help the patient in
getting up;76 a situation where force may be neces-
sary. However, would not practising getting up be
equally, or even more, effective? For stroke patients
sitting and reaching training improves sitting and
reaching, and the production of vertical force
through the leg as they lean forward.77 The vertical
force improvement in the leg seems to transfer to
improvement in getting up from the sitting position,
but no aspect of that training transfers to walking.
However, training of stroke patients in walking
improves walking speed and distance, but not bal-
ance.78,79 Balance seems to be improved by chal-
lenging balance.80 But challenging static balance in
standing might not transfer well to dynamic balance
during walking!81 Yes, the similarity principle can
be that finicky.
62
How similar should training be?

Current research cannot provide the answer as to
how far a treatment can stray from 100% similarity
(Fig. 5.7). The studies in motor control and learning
are very adamant that it should be very close.12

However, most of these studies have been carried
out on healthy individuals who are learning new
and unfamiliar tasks. As discussed previously, neu-
romuscular rehabilitation involves individuals who
are not true learners; they are being retrained in
activities that they have experienced in the past.
They are “readjusting” rather than learning some-
thing new.

We can imagine 100% should give the best result.
If walking is affected then just practise walking.
However, in the case of a patient who is unable to
execute 100% similarity, how far can they afford
to stray from that ideal and still improve? For exam-
ple, I have been working with a stroke patient who
was unable to walk, partly due to inability to flex
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within context

Fig. 5.7 � How similar is your rehabilitation? The effectiveness of practice can be assessed by examining how
similar it is and whether it is in the context of the goals of training. Rehabilitation is likely to be more effective if it is
similar and within the context of the movement goals of the treatment.
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the hypertonic extended knee. We proceeded to
improve this movement in sitting. After a long and
intense focusing on this particular movement the
patient regained the ability to flex and extend the
knee, as well as execute rhythmic pendular move-
ments (similar but out of context to walking). It
would be logical to assume that once it has been
mastered, the patient should be able to transfer
the control of knee bending to walking. This was a
humiliating lesson in similarity and transfer. It had
absolutely no effect on bending the knee during
standing. It was as if he had never practised that
movement at all.

It is difficult to identify how close the training
should be to the goal of rehabilitation. The simple
solution is to endeavour to keep the training close
to the 100% similarity and in context; unless the
patient is unable to perform similar movement pat-
terns or execute them within context.
Is recovery transferrable?

Imagine a patient who has a balance/postural sta-
bility problem. We would expect that all upright,
weight-bearing activities that depend on balance
will be affected. Is the reverse also true? Would
balance training during standing or walking transfer
to running, skipping climbing stairs or playing
basketball?

We can only assume that recovery in balance/
postural stability in one or two weight-bearing activ-
ities (walking, stairs) will also improve all other
related upright activities (running, hopping on a
tennis court). If this assumption is correct it pro-
vides an interesting therapeutic shortcut. There is
no need to rehabilitate every physical action in a
person’s movement repertoire. All that may be
needed is to “re-abilitate” the specific abilities
which are shared by several skills. This assumption
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is somewhat supported by clinical experience. The
time spent with the patient can never be sufficient
to rehabilitate every skill. Yet, patients often
improve in a wide range of physical activities as a
consequence of a relatively short session time. This
suggests that recovery in specific abilities practised
in one activity may transfer to other activities that
depend on these particular abilities.

The transfer of training can be in two directions:
a “lateral” and a “vertical” transfer. A lateral transfer
would be to similar tasks, such as from walking to
stair-climbing. A vertical transfer is the same task
but at increased difficulty (greater force, amplitude,
speed, range, etc.).82–85 Walking with a rucksack
which increases the load is a vertical transfer. It
requires complex neuromuscular reorganization
compared to free walking, but does not require
any extra learning.86

Lateral and vertical transfer was demonstrated in
a study examining the effects of exercise on neuro-
muscular control after knee meniscectomy. The
patients presented with neuromuscular deficits and
functional limitations, which were evident several
years after their operation. The exercise programme
comprised postural stability training and functional
strength and endurance exercises for leg and trunk
muscles. The exercise group showed significant
improvement in hamstrings strength and quadriceps
endurance (vertical transfer), but, importantly, they
also improved in one-leg hop, something they did
not train for (lateral transfer). There is also evidence
that training in tai chi transfers laterally to postural
stability and coordination.87 Another example of
vertical transfer was shown in subjects with lateral
ankle sprain. It was demonstrated that training
under moderately unstable conditions can transfer
to improvements in postural control under more
challenging stability conditions.27

Inter-limb transfer: the left hand does
know what the right hand is doing!

Learning a task on one side of the body can some-
times transfer to the other side.88,89 For example,
strength training on one side was shown to transfer
to the opposite side (about a 10% increase).90 This
could be due to the motor programmes being a
generalized scheme of movement rather than being
limb-specific (Ch. 2). Interestingly, brain scans
demonstrate that motor learning on one side of
the body tends to bring about similar cortical
changes in both hemispheres.91
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Movement strategies in painful conditions may
also transfer to the opposite limb; probably through
the same central mechanisms. In patients with
chronic wrist pain, coordination losses were evident
in the affected and, to a lesser extent, in the non-
affected hand.92

There may also be a sensory transfer between the
two limbs. In individuals who had cruciate ligament
reconstruction or shoulder injury, decreased propri-
oceptive ability was present in some measurements
in the injured as well as the uninjured side.93,94

The clinical implication of this inter-limb trans-
fer is not clear. It is yet to be established whether
treating the non-injured limb will result in signifi-
cant clinical improvement of the injured limb
(I am placing my bets on treating the injured limb).
Variability in training

The similarity principle suggests that training should
be as close as possible to the goal movement. How-
ever, most movement patterns are highly variable.
In the clinic often the variability is reflected in
changing the movement parameters or varying the
task itself. During the rehabilitation of walking,
variability would reflect in practising different walk-
ing speeds or stride lengths. Furthermore, walking
itself can be practised in different tasks: walk side-
ways, walk over an obstacle, stairs, heel-toe, walk
and turn, and any other variation. From studies of
healthy subjects and individuals suffering from cen-
tral damage, such variability during training helps to
improve retention and transfer and increases the
movement repertoire.12,30,40,95,96,97

Different tasks can be introduced in various
sequences. Blocked practice is when each task is
practised individually, for example walking only.
Another possibility is to mix several related tasks
in random practice,12,95 for example walking, stairs,
running, skipping, etc. Generally, a more random
sequence seems to be beneficial for individuals with
an intact CNS.95,96,98 This form of practice intro-
duces greater cognitive/motor processing demands
on the individual. It tends to reduce performance
during the training/treatment sessions but seems
to benefit retention and transfer (which is the
important bit).

Patients suffering from CNS conditions, such as
Alzheimer’s and Parkinson’s disease, where cogni-
tive demands can be an issue, seem to do better in
retention and transfer when the tasks are practised
individually and repetitively.99,100,101 Clinically, a
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pragmatic approach is probably useful for schedul-
ing of tasks. Use the patterns that the patient can
cope with, rather than using a strict protocol.
Neuromuscular exercises – do
they exist?

There is a trend to label some forms of training as
neuromuscular exercise.102,103 Is there such a
distinct training entity? All exercises performed
actively by the patient are neuromuscular. Whether
they are performed lying down, sitting or with the
aid of machines; they are all challenging the neuro-
muscular system. Presumably, what is meant is that
some exercises are more within the context of
certain sports or related tasks. Hence, they are
more functional to that particular athlete and
their sports. This is in contrast to exercises such
as the traditional force training in the gym, which
are dissimilar, out of context and may even be
extra-functional.

Is one approach better in some way? The very
few studies that do exist generally demonstrate bet-
ter outcome in various measures for the functional
exercise (neuromuscular exercise) compared with
more traditional strength training.68,104 However,
it seems that functional training may bring about
additional motor control benefits. For example,
standing balance training can give the same strength
gain in the leg as using specific machines for leg
curls and leg presses.68 The balance training had
the further advantage of improving balance and
equalising the muscle forces between the dominant
Table 5.2 Differences in motor learning strategies between young

Young

Observing, mimicking, some cognition?

Favour internal focus

Cope better with less variability in practice

Need more feedback

Greater need for repetition

May require longer rehabilitation due to lack of motor

experience (“unskilled injured”)
and non-dominant leg.68 Hence, exercises that are
similar and within context are more likely to chal-
lenge a greater range of underlying abilities, includ-
ing the composite abilities, such as balance/
postural stability, single, multi-limb and whole body
coordination.
Summary points

• For effective motor adaptation/learning, the
practice needs to employ five principal elements:
cognition, being active, feedback, repetition and
similarity.

• Cognitive: the patient should be attentive to their
movement and encouraged to process and make
decisions about their actions.

• Active: being physically active is important for
motor learning. Passive approaches are unlikely to
be effective in promoting lasting and functional
motor control changes. Mental practice, an active
cognitive process, activates thewholemotor system
and, therefore, may be a valuable clinical tool.

• Feedback can be intrinsic from proprioception or
extrinsic, such as guidance by the therapist.

• Repetition, repetition, repetition – very
important for long-term memory.

• Similarity: rehabilitation should use movement
patterns that are similar to and within the
context of the movement being recovered.

• Rehabilitation which is dissimilar or out of
context is unlikely to transfer from the session to
daily activities.
children and adults

Adults

Use cognition

Favour external focus

Favour variability

Minimal feedback

Need repetition but not as much

Know the movement but can’t perform it (“skilled injured”)

Motor re-adaptation and reorganization rather than true learning

65



Neuromuscular Rehabilitation in Manual and Physical Therapies
• Experiences that possess a higher content of
adaptive code elements have a greater potential
for promoting long-term changes.

• Experiences with low code content will fail to
promote any significant adaptation and will
result in an ineffective, short-lived response to
treatment.

• External focus is more effective for
motor learning. Internal focus should be used
only in learning novel movements or if the
66
patient has “forgotten” how to move correctly.
Internal focus should be withdrawn as soon as
the patient is able to perform the movement.

• Internal focus approach may be more beneficial
for patients with CNS conditions.

• Children and adults may use different motor
learning strategies which may influence the
treatment approach (Table 5.2).

• Air guitarists can’t play real guitars.
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6
Plasticity in the motor system
Learning, retraining, motor reorganization in response
to injury and return to functionality all imply that the
motor system has the capacity to adapt to new
experiences. Chapter 5 discussed the behavioural
aspects of motor learning and how they can be used
to promote sensory-motor adaptation. This chapter
will examine the neurophysiological consequences
of learning and their relevance to rehabilitation.

Sensory – motor adaptation

There are several neurophysiological processes asso-
ciated with learning and sensory-motor adaptation
(also termed neural plasticity).1–3 They include
changes in the neuronal cell surface and its fila-
ments, sprouting of cell dendrites and axons, growth
of new synaptic connections and changes in neuro-
transmitter release at the synapses. More recent
studies have demonstrated neurogenesis (new neu-
rons) within specific parts of the brain, in particular
the hippocampus, an area associated with learning
and memory. Neurogenesis has also been observed
after brain damage in the areas of neural tissue
repair.4,5

Plasticity in the motor system is not centre-
specific but tends to occur within the whole sen-
sory-motor system.6 Tapping the index and middle
finger of a monkey daily for several months was
shown to change the cortical representation of the
hand. The area representing the hand increased, dis-
torting the cortical map in favour of the tapped
fingers.3 In blind Braille readers there is an expan-
sion of the sensorimotor cortical representation of
the reading finger.7 Similarly in musicians, there is
an increase in cortical representation of the playing
fingers.8 These changes in the cortex were shown
to occur fairly rapidly, within 3 weeks of practising
a novel task.9 In the cerebellum, striatum and
other motor-related cortical areas such changes are
evident within a few days.10 Interestingly, cortical
reorganization is so rapid that it can even be demon-
strated shortly after proprioceptive deprivation by
an anesthetic block.11

Adaptive changes related to motor learning have
been shown to take place even in the reflexive part
of the motor system and spinal cord. Monkeys can
be trained by the offer of a reward to depress or ele-
vate the amplitude of the stretch reflex.12–14 The
reflex changes become evident within a few weeks
to months and will persist for long periods of time,
even after the removal of supraspinal influences, i.e.
without the brain.13 This implies that the spinal
cord has the capacity to retain learned experiences.
Humans can also be taught to control their stretch
reflex, but it only takes nine practice sessions.15

The reason for this difference may lie in the potent
influence that cognition has in humans in accelerat-
ing the learning process (Ch. 5).

Further evidence for spinal cord “learning” was
demonstrated in a studywhere animals that have only
their spinal cord intact are trained to either stand or
walk.16 The results were task-specific learning where
each group could only perform the task in which
it was trained (walk or stand). Training each group
in the other task reversed these two conditions,
i.e. the walking group could be trained to stand, and
vice versa. Once the activity was changed, the animal
was unable to perform the previous motor task; a sort
of competition in adaptation.
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Central sensorimotor plasticity can also be
demonstrated following injury in the periphery. In
normal circumstances, the palm of the hand is used
more than the dorsum and, therefore, the median
nerve has a wider cortical representation. When
the median nerve is cut, the cortical map of the
hand will change in size in favour of the intact radial
nerve. If the median nerve is allowed to regenerate,
it will recapture some of its lost cortical territory.17

Similarly, amputees or patients with spinal cord
injuries show a lower threshold to excitation of
muscles which are still innervated (proximal to the
lesion).18–20 This is attributed to enlarged sensori-
motor representation of the unaffected proximal
muscles and shrinkage of the sensorimotor repre-
sentation of the denervated muscles.

Even less dramatic events such as immobilization
and subsequently remobilization will result in motor
adaptation.21,22 It was demonstrated that during
remobilization there was reorganization of the brain
indicative of a “relearning” process.23 Such plastic
changes in response to immobilization can also be
observed in the spinal motor centre.24 Adaptive
changes in the firing patterns of motor units can
be demonstrated by straightforward joint immobili-
zation.25,26 Most of the adaptive changes took place
within the first 3 weeks, probably beginning within
days of immobilization.23

In patients with CNS damage the recovery of
motor function is associated with motor reorganiza-
tion in the brain.27–32 Imaging studies have demon-
strated that functional recovery of movement in the
affected hand is brought about by the shift of neuro-
nal recruitment to other areas of the brain; areas
which previously were not involved in controlling
that particular movement.

Peripheral plasticity – muscle, the
acrobat of adaptation

By being a part of the neuromuscular continuum,
muscle can exhibit dramatic adaptation in parallel
to central plasticity.33 Changes in the muscle can
be in the form of length adaptation, hypertrophy
and changes in the fibre type of the muscle.34–43

The adaptation in muscle tends to be fairly
specific to the type of activity practised. Training
in one form of activity, for example running, does
not necessarily provide the neuromuscular adapta-
tion required for, for example cycling (specificity
principle in training), in the same way that the prac-
tice of yoga will not provide the adaptation required
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for lifting weights. When learning a new movement
pattern the muscle (and for that matter, the whole
motor system) will readapt to the newly practised
activity. In the muscle this involves a degree of fibre
destruction (hence the delayed onset of muscle sore-
ness) and adaptive reconstruction according to the
new demands placed on it. Such adaptive changes
in the muscle happen quite rapidly within 2–3
weeks.

The importance of physical
challenges in adaptation

Physical challenges play an important role in pro-
moting central reorganization and adaptation. In
mice with partial spinal cord damage, treadmill
training was shown to promote axonal sprouting
and synapse formation proximal to the lesion and
to improve motor recovery.44 Even neurogenesis is
driven by general physical activity or by providing
challenging environments for the individual.4,5

However, not all exercises are equal. Motor
learning that involves tasks such as coordination and
balance encourages synaptogenesis, whereas tread-
mill exercise encourages the formation of new blood
vessels in the brain (angiogenesis), with delayed
synaptogenesis.45–49 In a further study, synaptogen-
esis was evaluated using similar exercise protocols in
animals with an induced stroke.46,47 Synaptogenesis
was evaluated after 14 and 28 days and was found
to be intensively active within 14 days in the balance
and coordination group, whereas in the treadmill
group it was evident only at 24 days. Furthermore,
in animals, early introduction of aerobic exercise
after brain trauma tends to delay brain plasticity.50,51

These studies have an important message for us:

Neuromuscular rehabilitation is not just about
exercising. It is about providing cognitive-
sensory-motor challenges that will facilitate
motor learning/adaptation.

Hence, running on a treadmill could provide aer-
obic challenges and stimulate synaptogenesis (to a
limit, otherwise marathon runners would have huge
brains). However, running an obstacle course will be
both aerobic and more cognitively demanding, since
it involves more task variability and places greater
challenges on various motor abilities. Similarly,
playing a tennis game with a partner is more cogni-
tively/motorically challenging than practising hitting



C H A P T E R 6Plasticity in the motor system
a ball against a wall. These cognitive-motor chal-
lenges may, therefore, result in more complex sen-
sory-motor reorganization. The message here is
that rehabilitation should follow a similar strategy.
It should provide challenges that vary, are cogni-
tively demanding and are fun and interesting
(depending on the patient’s capacity). Avoid using
“mindless” and tedious exercises.
Summary points

• Learning, retraining, motor organization to injury
and return to functionality partly depend on the
neurophysiological capacity of the motor system
to adapt to new experiences.

• Motor adaptation is not centre-specific and can
be observed throughout the neuromuscular
continuum: brain, spinal cord and muscles.

• Central and peripheral adaptation occurs
concurrently; separating them during treatment
is artificial and ineffective. The muscle cannot be
rehabilitated in isolation from its controller (the
person).

• Rehabilitation is more about facilitating
cognitive-sensory-motor processes and providing
a stimulating and variations-rich environment. It
is not just exercising.
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7
Motor reorganization in
musculoskeletal injury
Musculoskeletal injury or pain will bring about pro-
found cognitive, behavioural and motor control
responses that serve to protect the body from fur-
ther damage.1,2 This response to injury is termed
here the injury response.

In this chapter we will explore how the motor
system reorganizes movement in injury and what
influence it will have on the motor abilities. It will
also discuss in which situations should neuromus-
cular rehabilitation be used and at what point after
injury it should be introduced. The chapter will also
examine the relationship between long-term motor
reorganization and recurrent injury and progressive
joint/tissue damage.

The injury response

There seems to be a “standard” motor response to
damage or pain no matter which area or tissue is
affected in the body. This injury response often
manifests as a slowing down of movement, a loss
of force, reduced movement range and an increase
in fatigability. It is as if the motor system has used
a “dimmer switch” to turn down the four move-
ment parameters (force, velocity, length/range,
endurance, Fig. 7.1). Furthermore, to ensure that
the individual will not be tempted to physically
stress their injury, within the psychological dimen-
sion, another inhibiting process kicks into action:
the curbing of the “will to move”. The individual
will have an emotional experience of pain, fear of
use, sense of weakness and loss of the will to carry
out the movement.
This reorganization to injury can be put on hold
during disastrous life-threatening events to allow
the individual to reach safety. Hence, a person
with a moderate leg or trunk injury may be able
to escape from a burning house. Later, when there
is perceived safety, the injury response will take
over and in a matter of hours the person will
become motorically unable to move. However, this
injury response will be overrun by a survival
response if this period of recuperation is suddenly
interrupted by another life-threatening event. The
person may find that they are, again, able to move
using the injured limb.

There is an important point to this short story.
The motor system can “switch” the injury response
“off or on”, depending on priorities. In musculoskel-
etal injury the motor system is healthy and well
functioning compared to the tissues which are under-
going repair. There is no motor dysfunction, motor
pathology or movement dysfunction here. This
reorganization is a positive and well-orchestrated
response.

In musculoskeletal injury the tissue damage is a
set quantity at any point in time, e.g. the number
of torn muscle fibres. On the other hand, the motor
response is a variable entity. The magnitude of the
whole response, or elements within it, can alter on
a moment-to-moment basis depending on numerous
factors. Apart from the severity of tissue damage,
they include physiological needs (having to walk to
find food), socio-economic realities (having to go
to work with back pain) and psychological factors
such as the “will” of the individual, health beliefs,
mood, motivation, fear or depression. This
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Fig. 7.1 � The “standard” injury response – a protection
strategy which includes the turning down of the four
movement parameters.

Neuromuscular Rehabilitation in Manual and Physical Therapies
highlights the fact that the organization to move-
ment is a complex multidimensional process and
not a crude, stereotypic “stimulus-response” reflex
(although there is some of this in it). It also means
that motor control in injury can be more effectively
rehabilitated by treatment that embraces the psy-
chological/cognitive and behavioural dimensions of
the individual (Ch. 8). These have potent and often
dominant modulating influences over the more
reflexive control elements.3–7 For example, during
movement subjects with high fear avoidance tend
to reduce the force of their trunk muscles by
half.8–10 It implies that their force losses can be
recovered by cognitive changes without any trunk-
strengthening exercise!

It should be emphasised that the injury response
can be initiated during any pain experience even in
the absence of tissue damage or inflammation. The
system may “mistake” the pain for being an injury.
This is often observed in the non-traumatic and
chronic pain conditions (Ch. 9).
Move
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Fig. 7.2 � Motor organization for preventing
further damage after injury.
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The motor system in injury

In response to damage, information about the dam-
age arrives to the central nervous system (CNS)
from nociceptors and proprioceptors (Fig. 7.2). This
information together with the cognitive/emotional
experience of the injury will be integrated to orga-
nize for the injury. The next stage in this process
is the selection and activation of the motor
programme that will modify posture and movement
in relation to the injury. It would be interesting to
know whether these programmes for injury are
learned responses or are pre-existing templates. It
seems that we all immediately “know” what pos-
tures to adopt when injured (anyone for a PhD?).

Once the appropriate response has been selected
the motor output will ensue, with the individual
exhibiting the movement patterns associated with
their injury.11,12 It seems that there can be several
responses to any one injury. Each individual uses
their own unique movement patterns. Such varia-
tion between individuals has been observed in
impingement syndrome of the shoulder and chronic
neck pain conditions.13,14 This has been also demon-
strated in subjects with anterior cruciate deficient
knees, where each person seems to have an individ-
ual compensating strategies during walking.15 Fur-
thermore, an injured person may demonstrate
several “movement solutions” to a given task.

These injury responses are task-dependent and
would, therefore, change between different activ-
ities.16,17,18 It is also likely that the organization
for injury changes over time.19,20
ment organized for damage limitation
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Clinical note
• It’s all too complex (but there is a solution)!
• Individuals have individuality in their injury
response.
The signalling of damage

The signalling from the body is a mix of information
about tissue damage from nociception and informa-
tion from proprioception about the mechanical
changes in the affected tissues.21 The perception
of pain is evoked by the information from nocicep-
tors and other receptors, such as mechanoreceptors
from the skin, muscles and joints, which also con-
tribute to the sensation of pain.22,23

Proprioceptors can signal damage and promote
motor reorganization in the absence of pain. When
the knee is effused with non-painful saline it will
initiate an inhibition of quadriceps motoneurons
akin to the reflex patterns seen during knee
injury.24 Similarly, non-noxious stimulation of the
glenohumeral joint capsule will elicit strong inhibi-
tion of the shoulder muscles (see arthrogenic inhibi-
tion below).25

Conscious awareness and the experience of
injury will also have profound influence on the orga-
nization around injury. It may increase the levels of
pain, increase movement incapacity and may even
Parametric abilities

Force, velocity, length, endurance

Synergetic abilities

Co-contraction and reciprocal activation

Composite abilities

Balance, coordination,
transition time, motor relaxation

Skills
impede the rate of recovery.6,16,26,27 Generally,
injuries that are psychologically traumatic, such as
road traffic accidents, are more likely to have such
negative influences.28,29

The injury response and motor
abilities

The turning down of the four movement para-
meters implies the involvement of the parametric
and synergistic abilities in motor reorganization dur-
ing injury (Fig. 7.3).30

It is expected that these abilities will be selective
to the affected limb. However, local changes may be
accompanied by complex whole-body pain/damage
avoidance reorganization.26 In patients with lower
back pain (LBP) motor reorganization can be
demonstrated even in the unaffected upper limb.30

Furthermore, injuries affecting control on one side
of the body may have a low-level cross-over to the
opposite side.31

Composite abilities such as local coordination
may also be affected.26,32 They are expected to be
associated with chronic musculoskeletal conditions,
where movement dysfunction is progressing from
an injury to a more chronic adaptive response. This
is seen in situations where prolonged hand immobi-
lization leads to local losses in coordination.33

Another possibility is that composite abilities, such
as postural stability/balance and coordination, may
appear to have been affected.34–36 However, they
Fig. 7.3 � In the injury response the parametric
abilities are affected within a synergistic level
(change in one of the synergistic pairs is likely to
affect the other in the pair). It will also have a
knock-on effect on the composite abilities.
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may represent the knock-on effects of changes in
synergistic abilities and proprioception.

Force control

Patients with acute or chronic conditions will often
complain of feeling that their joints or muscles are
weak and that they fatigue easily.37,38 This experi-
ence may sometime persist long after the pain has
been alleviated and repair seems to be fully
resolved.

There is a biological logic in this mechanism.
Forceful muscle activation will raise the intramus-
cular as well as the intracapsular pressure and may
result in further damage to these tissues.61,62

The force losses could be attributed to two pro-
cesses. In the psychological dimension patients with
musculoskeletal damage will be reluctant to fully
activate their muscles because of fear of pain, and
in the conscious sense there is a localized weakness
and inability to successfully execute the move-
ment.7,39–41 This may lead to disuse atrophy, in par-
ticular if the patient is withdrawing from physical
activities. In the neurological dimension, another
more reflexive mechanism reduces the gain of the
spinal motoneurons in response to joint damage.
This is often called arthrogenic inhibition or failure
of voluntary activation (Fig. 7.4). The outcome of
this is more localized force loss, reduced endurance
and, consequently, muscle wasting.37,38

Arthrogenic inhibition has been observed in acute
knee effusion and inflammation,42–48 in a chroni-
cally damaged knee (anterior cruciate ligament
[ACL] tears, osteoarthritis [OA] of the knee and
ageing) and in the elbow joint.34–36,49–52 A similar
process probably underlies the wasting of the multi-
fidus and psoas muscles seen in patients with
chronic lower back and neck pain.53–59 Such muscle
wasting can occur fairly rapidly. In acute lower back
patients wasting of multifidus has been observed
within 24 hours of pain onset.55 Individuals who
maintain physical activities after their injuries tend
to reduce the negative effects of arthrogenic
inhibition.52,60
Length control

Another strategy to prevent more damage is to limit
the range of movement by muscle bracing.63 The
most dramatic demonstration of this is seen in acute
conditions, such as acute torticolis or acute lower
back pain, where the patient is immobilized rigidly
78
by muscle contractions.64,65 Probably this bracing
strategy is achieved by an increase in localized co-
contraction combined with hyper-reactive control
to the muscles that restrict the movement towards
damage.64–67

This controlled narrowing of range has also been
observed in chronic conditions. In normal subjects
during full forward bending the spinal extensor
muscles tend to become inactive at the end range.
However, in subjects with chronic back pain these
muscles remain active even at the end range. Also
in chronic back pain there is an increase in loca-
lized bracing by co-contraction, which will further
limit the movement range.7,68 These control
elements are all part of a strategy that aims to
keep the person upright and prevent them from
bending – movements which would otherwise
overload the damaged/painful posterior spinal
structures.7,69,70

Such organization to limit the extent of move-
ment can be seen also in painful muscle. When a
muscle is injected with a painful irritant there is
an inhibition of the painful muscle and excitation
of muscles antagonistic to the movement.71–73 Sim-
ilarly, when pain is induced in tibialis anterior there
is reduced joint movement in the limb during
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Fig. 7.5 � Synergistic protective strategy to prevent further
damage. Inhibition and weakness of muscle that pulls the
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walking, which is controlled by a decrease in activity
of the tibialis anterior and gastrocnemius muscles
(synergistic control).71

Velocity control

Another hallmark of the injury response is slowness
of movement.11,12,63,74–76 Individuals with back
pain reduce their walking speed and when pain is
severe they seem to move almost as if in slow
motion. Often the crucial indication that they are
improving is that their movement speed begins to
recover.

The slowing-down response is mediated within
the psychological/psychomotor dimension affecting
overall movement, as well as within the neurological
dimension as a localized reflex response directed to
muscles at the area of damage.67,77
muscles that resist that movement.
Neuromuscular endurance

One way of reducing stresses on a damaged area is
to prevent the person from repeatedly loading it
by reducing endurance.37,38 Localized, diminished
neuromuscular endurance can be observed even in
the absence of pain.19,37,38,69,78–80
Synergistic abilities

Co-contraction and reciprocal activation are pro-
foundly affected following tissue damage and in
pain conditions.81 Several control factors can change
in injury:
1.
 The relative force, velocity, muscle length
between the synergistic pairs
2.

Synergists
Augmentation or diminution of one of the
synergistic patterns
co-contract

3.
Fig. 7.6 � Joint bracing is a synergistic co-contraction
pattern to increase stability and reduce the movement
range.
The timing and duration of activation between
the synergists.

At synergistic level, the reorganization of the
parametric abilities is represented as changes in
the relative forces, velocities, lengths and fatiga-
bility between muscle pairs. Such reorganization
can be observed in knee effusion where there
may be force losses in the quadriceps coupled with
an increase in hamstrings reactivity (Fig. 7.5).47

Even fatigue or delayed muscle soreness in one
muscle group will have an influence on control of
the non-exercised synergists.82–85
A diminution of one of the synergistic patterns
can be observed in different conditions. Functional
instability is often the outcome of co-contraction
inhibition.49,86–90 In the ankle joint it often mani-
fests as a sudden “giving way” during foot contact.
This control failure seems to be sustained long after
the tissues have recovered and may predispose the
individual to recurrent ankle injury.90

An increase in the dominance of co-contraction
strategy can be observed in lower back patients.91

Co-contraction is considered to be an important
control strategy to maintain spinal stability.92,93

Patients suffering from low back pain tend to use
higher levels of co-contraction force to increase
stability, but also limit the range of movement (Fig.
7.6). They also have different reciprocal activation
patterns of trunk muscles, indicative of synergistic
79
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reorganization.91,94–96 These control changes can be
observed in every muscle group in the trunk, dia-
phragm and beyond.91,97,98 Remember, even muscles
that are inactive have a role within the synergistic
control strategy (Ch. 2).

Changes in timing and duration

The timing of activation of synergistic muscle group
during co-contraction and reciprocal activation are
also affected in injury and pain. Everything is possi-
ble here: from changes in onset timing to changes in
the duration of activation.67,99 Delay in peroneal
onset times can be observed in ankle and in tibialis
anterior when this muscle is injected with an irri-
tant.90,100 Patients with anterior cruciate repair
were shown to have longer onset times of hamstring
muscles activation.101 It is expected that all these
timing differences would also affect the synergistic
pair.

Synergistic timing can be very complex. This can
be demonstrated in a study of trunk muscles activa-
tion during sudden trunk loading:

. . .for healthy control subjects a shut-off of
agonistic muscles (with a reaction time of
53 msec) occurred before the switch-on of
antagonistic muscles (with a reaction time of
70 msec). Patients exhibited a pattern of
co-contraction, with agonists remaining active
(3.4 out of 6 muscles switched off) while
antagonists switched on (5.3 out of 6 muscles).
Patients also had longer muscle reaction times
for muscles shutting off (70 msec) and switching
on (83 msec) and furthermore, their individual
muscle reaction times showed greater
variability.67

This kind of complexity is not clinically friendly.
It is not possible to test it or to even remember all
of these minute details. Further complexity is intro-
duced as this motor reorganization changes on a
moment-to-moment basis during different postural
and movement situations, i.e. these strategies are
task-dependent. For example, during sudden pos-
tural challenges the onset timing of transverses
abdominis can change depending on variables such
as the phase of breathing,98 different velocities and
direction of arm movement,102 and position of the
trunk.103 In chronic lower back patients these tim-
ings tend to be reorganized, but still remain com-
plex task-dependent patterns (Ch. 2).103–108
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Important clinical note
The fine motor changes described above are often
single events within a more complex motor
reorganization.109 They represent a moment in time
within a particular task carried out in the lab. It is very
easy to lose track of the whole person/response and
to be hooked on single control aspects such as timing
of transversus abdominis or the cross-sectional area
of multifidus at L4-5 in CLBP. They represent different
aspects of a larger reorganization (see Table 3.1,
Chapter 3) and, therefore, these single factors should
not be the ultimate therapeutic goal.
How to resolve this problem of complexity is not
to worry about it too much. It is virtually impossible
to analyse injury organization muscle by muscle or
reflex by reflex. Rehabilitation should ultimately
focus on overall control. Think movement not muscles!

To treat or not to treat

It was put forward above that the injury response is
a healthy motor control reorganization to prevent
further injury. The question that arises is whether
we can improve on this system and is there a time
that we should intervene.

The immediate short-term reorganization of the
neuromuscular system after injury should not be
the focus of rehabilitation. This protective function
often resolves when repair is complete and pain is
alleviated (Fig. 7.7). If it didn’t, we would all suffer
from progressive motor disability from our multiple
injuries throughout life. Perhaps in the first 2–3
weeks after injury the neuromuscular system should
be left alone to do what it does best. All that is
needed is for the patient to keep being active to
facilitate this natural recovery, i.e. no specific reha-
bilitation is required. For example, we know that
patients with acute lower back pain need no extra
exercise to get better. The advice is to keep being
active.110,111 Generally, individuals who keep up
with their physical activities after injury have less
pain and a better motor control status than those
who withdraw from activity.19,60 However, overall
management including gradual exposure, goal-
setting, and cognitive-behavioural reassurance and
empowerment can be helpful for some patients dur-
ing the acute phase (Ch. 8).

So when does the injury response become dys-
functional? This occurs when the injury response is
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Fig. 7.7 � Acute injury. Motor re-organization
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maintained in the absence of a repair process, i.e. it
serves no obvious functional/protective purpose and
is impeding normal movement. There are four
potential mechanisms that can account for main-
taining a dysfunctional organization:
1.
 Severe injury or post-operative conditions
where the repair is taking longer than usual to
resolve (Fig. 7.8).32 The injury response
becomes the dominant movement strategy
through the process of neuromuscular
plasticity/adaptation. Consequently, the
protective patterns may persist after tissue
repair has been fully resolved.112
Reorganizatio
to adaptation

Motor re-
organization
for injury

Pain

Tissue
damaged

Time

–

+

~1–3 weeks

No pain

Tissue recove
2.
 Physical constraints or immobilization that leads
to a dysfunctional motor adaptation (Fig. 7.8).
For example hand immobilization may lead to
loss of coordination due to disuse (seen as plastic
changes within the spinal cord and brain).33
3.
 Sensitization conditions where tissue damage
has resolved but has remained painful
(Fig. 7.9). Under these circumstances the
CNS/individual may perceive pain as being an
indication of damage and maintain a protective
movement strategy, such as seen in individuals
suffering from chronic lower back or neck
pain.113
n

ry

Fig. 7.8 � Sensitization conditions where
tissue damage has resolved but has remained
painful. Under these circumstances the central
nervous system/individual may perceive pain
as being an indication of damage and
maintain a protective movement strategy.
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4.
 Psychological distress leading to “psychomotor”
movement losses, such as seen in depression,
anxiety conditions or high levels of fear-
avoidance and catastrophizing (Fig. 7.10).3–7

The therapeutic intention may change for the
different groups, but the rehabilitation is often very
similar. In the group that is recovering from injury
or is sensitized and where there is no obvious psy-
chological distress (e.g. fear-avoidance), the inten-
tion is to help to recover motor losses. In patients
where there is high psychological distress but low
Motor re-
organization
for injury

Pain

Tissue
damaged

–

+

Fig. 7.10 � Psychological distress may lead to
“psychomotor” movement reorganization that
resembles an injury response.
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evidence of tissue damage, rehabilitation is still the
same, but the underlying therapeutic intention is
to provide behavioural reassurance and empower-
ment, even in the absence of motor losses (Ch. 8).
Can the motor changes lead to
further injury or progressive
damage?

The short answer to this is we don’t know. The evi-
dence is mixed and not well-researched. In this
model, altered control results in abnormal mechani-
cal stresses being imposed on the joints/tissues. This
is believed to lead to further damage or recurrent
injury.49,87,89,114–116 This is supported by some evi-
dence that motor instability, such as seen in ankle
sprains, can lead to future recurrences.86,90,117,118

Also there is some evidence that athletes with slug-
gish reaction times are more prone to back and knee
injuries.119,120

However, in a 20-year follow-up study of
patients with chronic ankle instability, degenerative
changes were observed only in six of 46 ankles, with
no correlation to age or persistent instability.

There is also an interesting observation from
working with stroke patients. It seems that the
affected hand does not develop degenerative
changes, although they suffer extensive motor con-
trol losses.121 Similarly, ambulatory chronic stroke
patients don’t seem to develop any progressive joint
or soft-tissue damage in the affected lower limb
Fear and catastrophizing

Low level sensitization

Time

Tissue recovery
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(unless they have an injury due to loss of control).
But what is very surprising is how little these stroke
patients suffer from back complaints, even though
they have severe motor control losses to the
trunk/spine.

As noted earlier, if motor losses led to progres-
sive damage we would never recover from our inju-
ries. We would forever be in a negative loop of
injury leading to motor loss, to further injury, fur-
ther motor loss and so on. Imagine even an uncom-
plicated injury such as the low level of damage
associated with delayed-onset muscle soreness after
exercise. Although it is associated with motor re-
organization/losses,122–124 most athletes will exer-
cise during that period, seemingly without further
progression of muscle damage.

Perhaps motor losses are more of an issue to
individuals such as athletes who challenge their
control of movement to the extremes of physical
performance? But then we must suspect that all
individuals have some motor losses related to past
or current physical history and that these can be
tolerated up to a certain point. Otherwise it would
mean that athletes would be plagued with recur-
rent and progressive musculoskeletal pain and
disability.

We need many more studies to establish how
much control changes can be tolerated and how
motor changes may interact with other factors to
promote further damage.
Clinical note
The primary aim of neuromuscular rehabilitation is to
help individuals to recover their control movement. It
is unknown if rehabilitation would confer protective
function against progressive tissue damage in the
future.
Summary points

• Themotor reorganization following injury is amulti-
dimensional strategy culminating in postural and
movement reorganization aimed at reducing the
mechanical stresses imposed on the damaged tissues
– in this text it is referred to as the injury response.

• The injury response is a positive healthy response
and not a motor dysfunction or pathology.

• This response is highly individualistic. It is a
dynamic process changing on a moment-to-
moment basis during different phases of repair,
levels of pain, re-injuries, underlying pathologies,
ageing, and psychological states, such as anxiety,
stress and depression.

• Acute musculoskeletal injuries should be left
alone – the body know best.

• Neuromuscular rehabilitation is useful when the
injury response serves no obvious protective
function. It includes:

� conditions where the injury response has
become an adaptive state, such as in chronic
recovery from injury or surgery or conditions
where there were movement constraints or
immobilization

� sensitization conditions where tissue damage
has resolved but has remained painful

� injury-related psychological distress that leads
to “psychomotor” movement losses.

• Parametric and synergistic motor abilities are the
ones most likely to be affected in musculoskeletal
injuries.

• Composite abilities may change as a knock-on
effect from parametric and synergistic abilities.

• Don’t get dazzled by scientific descriptions of the
minute reflexive motor changes in injury – don’t
lose sight of the forest for the trees.

• Think movement not muscles.
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Cognitive and behavioural
considerations in
neuromuscular rehabilitation
Motor control

Behaviour

The person /cognitions

Fig. 8.1 � Cognitions, behaviours and movement control are
profoundly interlaced and inseparable.
Cognitions, behaviours and movement control are
profoundly interlaced and inseparable and should
be considered as an essential part of patient care in
neuromuscular rehabilitation (Fig. 8.1).

A person’s beliefs, their attitudes and the action
they take when they are injured or in pain can have
important implications for their recovery. Further-
more, the individual’s movement repertoire may
contain particular habitual patterns that could put
them at risk of injury. These beliefs and behaviour
can be challenged in ways that could help the
patient to adopt different attitudes and modify cer-
tain elements in their behaviour, changes that could
facilitate recovery and reduce the potential for
future injury.

Injury cognitions and
behaviours

A patient who used to be a keen runner withdrew
from this activity due to mild lower back pain. He
was advised by his surgeon to stop jogging because
it would exacerbate the wear and tear in his back.
Another patient had knee pain as a consequence of
a fall in judo. He believed that “knees can be a prob-
lem” and considered stopping judo. A 65-year-old
tennis player had surgery of his serving shoulder.
He had all the possible shoulder conditions known
to humankind affecting this joint. Will he ever be
able to play tennis again?

All these patients are exhibiting certain beliefs
about their condition that hold them back from
resuming these activities. These beliefs often mani-
fest as fear-avoidance (“I can’t walk because it
causes my back pain and it will make it worse”) or
catastrophizing (“I will never be able to walk again,
I have to stop working.”).1–4 This group of patients
is adapting their behaviour in response to pain, dis-
comfort or movement losses, frequently withdraw-
ing from activities that may help them to recover.
Often these beliefs in combination with psychologi-
cal and social factors predate the injury and could
impact the potential for recovery. For example,
the development of serious back pain disability can
be predicted more accurately from psychosocial fac-
tors than from structural/degenerative changes in
the spine.5 The individual’s beliefs about their con-
dition may also be influenced by previous negative
injury/surgery experiences.

As the injury/pain lingers on, these factors feed
the widening discrepancy between the “real” physi-
cal losses and the patient’s perceived inability
(Fig. 8.2). For some individuals there is no such
gap. They may suffer significant movement losses
and may feel that their body has let them down.
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Fig. 8.2 � The patient’s psychological distress about their
injury may widen the gap between the actual and perceived
physical ability. Their behaviour during the injury is often
dictated by the perceived ability. Pre-injury factors such as
psychosocial traits, health beliefs and attitudes, and previous
experiences of injury/pain can influence their recovery.
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Fig. 8.3 � Cognition and behaviour are inseparable.
Changes in cognition will influence behaviour and vice versa.

Neuromuscular Rehabilitation in Manual and Physical Therapies
Patients suffering from physical losses and ongoing
painful conditions will often experience feelings
such as disappointment, anger, frustration, grief,
helplessness, loss of control and depression. Fre-
quently, the individual will become more focused
on their loss and dominated by their disability. Their
identity is that of an injured self, experiencing a neg-
ative change in their body and self-image.6–8 As time
passes these psychological distresses may become
more entrenched, further influencing the way the
individual interacts with their environment.9

These psychological factors are as important as
the physical aspect of the treatment and, therefore,
should be addressed during rehabilitation.

Cognitions, beliefs and attitudes

Within the professional–ethical boundaries of man-
ual and physical therapists there are several ways in
which we can help our patients to transform their
cognitions about their condition. This can manifest
clinically as challenging their beliefs about the condi-
tion, focusing on positive attitudes and engaging their
positive coping strategies. Our management will also
aim to help the patient to contain their fears, anxi-
eties and catastrophic thoughts by reassurance as well
as by empowering them to self-care.10–13 The out-
come from such transformations can be reduced pain,
improved movement ability, a return to more normal
occupational and recreational activities, and less
health-seeking behaviour.10–17

Cognition and behaviour are inseparable. Hence,
change in cognitions such as fear-avoidance will
90
influence the person’s behaviour. Equally, challeng-
ing behaviour through the introduction of safe and
non-aggravatingmovement experiences can influence
how a person perceives their condition (Fig. 8.3).

There are several ways in which to assist the
patient to transform their cognitions. Providing the
patient with relevant information about their condi-
tion can be part of this process.15,18,19 People who
have a better understanding of their condition can
be empowered to self-care more effectively and
are more likely to initiate behavioural actions that
challenge their fears. If we take one of the above
examples, the patient with the knee condition, it
was explained to him that his knee had got better
within normal expected times (2–3 weeks), that
the fact that he had no history of knee injury, and
that such an injury does not cause osteoarthritis.
This was enough to reassure him to return to judo
(see also: Working with cognitions: changing the
narrative, Ch. 9).

Also focusing on the “abled-self” rather than
“disabled-self” can help to reassure, pointing out
to the patient what they can do, rather than what
they can’t do. For example, I often see in clinic
patients suffering from chronic back pain who are
virtually symptom-free during demanding physical
activities such as gardening, playing football or
even windsurfing. The focus here would be on
these “abled” activities – focusing on success. This
approach also has a clinical manifestation. Move-
ment rehabilitation often starts with what the
patient is able to do and later experiments with
their inability – start with the possible and then
tease the impossible.
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Further to the focus on the cognitive aspects, we
must keep in mind the quality of the therapeutic
relationship.18 Clinical attitudes that include being
attentive to the patient’s emotional state, empathic,
non-judgemental, caring and encouraging, will all
have important implications for their process of
recovery.20

Reassurance by actions: the
behavioural experiment

Generally, after an injury most individuals will
return to pre-injury activities in a gradual manner.
They take a series of chances in which positive
movement experiences embolden them to take fur-
ther steps to improve the condition. However, there
are some injuries where the actions a person takes
result in pain and may lead to a gradual withdrawal
from these activities – sometimes beyond what is
required to prevent further damage. In this scenario
there is a growing discrepancy between the magni-
tude of tissue damage and the person’s perception
of their injury and, therefore, their behaviour.

One therapeutic aim is to help the patient to nar-
row the discrepancy between the real and perceived
losses. This can be achieved by implementing what
most injured individuals do naturally: gradual expo-
sure to the task. A graded challenge is a step-wise
increase in a particular activity (Fig. 8.4). This grad-
ing can be achieved by increasing the duration, rep-
etition or intensity of the remedial activity over
Condition timeline

Withdrawl by patient

Consolidation

Force
Duration
Repetition
Range
+Number of activities

Fig. 8.4 � The behavioural experiment includes a gradual
increase of challenges in specific activities. The challenge is
increased in a stepwise manner, widening the four movement
parameters. At particular times it may be necessary to
consolidate the improvements if the next step up aggravates
the condition.
time (think of expanding the four movement para-
meters – force, length, velocity and endurance).

A gradual challenge can have several clinical man-
ifestations. It can start in the session during exami-
nation, where the patient is guided in movement
patterns which they fear. For example, a patient
with non-specific chronic lower back pain may be
invited to perform different trunk movements or
even jump gently on the spot. For those with long-
term pain, and who are particularly apprehensive,
the physical reassurance may start on the treatment
table, as a challenge to the trunk in different move-
ment patterns (see DVD section on trunk rehabili-
tation). All these physical challenges are carried
out in a graded manner, within pain-free ranges
and physically possible tasks and with the support
and reassurance of the therapist.

Beyond the session the behavioural reassurance is
to gradually expose the patient to the very move-
ment and tasks which they fear.11,12,21–23 The
patient makes a wish-list of the exercise or activities
in order of importance. If the exercise, say, is to
return to tennis after a back injury, this would
be set as one of the therapeutic goals. The graded
challenge can start with serving a tennis ball against
a wall for 5 minutes a day, gradually increasing
the duration, intensity and number of serves over
several weeks and so on.

It is important to involve the patient in the
decision-making about the form of challenges, the
scheduling of the exposure and the setting of short-
and long-term goals.24 Goal-setting is all about
working out with the patient targets that are spe-
cific, measurable, attainable, relevant and have a
realistic time scale (acronym SMART).

Behavioural reassurance can have a profound influ-
ence on recovery and should not be underestimated.
It was demonstrated that in chronic back conditions,
pain levels and functionality can improve equally
well with cognitive-behavioural approaches as with
physical exercise.17,25 It seems that both approaches
share similar underlying process for improvement –
empowering and reassuring by reducing the levels of
anxiety/fear/catastrophizing. The exercise training is a
form of behavioural approach that challenges and
helps to transform the individual’s beliefs about
their condition and attitudes to their body (“my back
can do all this, so it must be OK”). The improvements
observed in patient suffering from back pain have been
attributed to these cognitive-behavioural factors rather
than to the physical changes in trunk associated with
exercising.26
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Clinical note
Gradual exposure and graded exercise can also help
the therapist deal with clinical uncertainties. We
never know exactly the level of underlying losses
and how complete the recovery will be. By gradual
exposure the recovery limits are not preset but
established during the behavioural experiment. This
also ensures that our beliefs/attitudes don’t act to
disenable/disempower the patient (e.g. “returning to
work or tennis will further injure your back”).1
Behaviour and musculoskeletal
pain

Some musculoskeletal injuries are just bad luck.
However, many are acquired and to a certain extent
preventable. Such injuries can be due to the way a
person uses their body or the frequency or duration
in performing specific tasks or movement patterns.
These conditions seem to stem from within differ-
ent spheres of behaviour, each requiring a unique
form of management.

For this purpose behaviour can be categorized into
several spheres (Fig. 8.5). There are behaviours that
are associated with the interface between the person
and their physical environment: the way a person
bends to lift, holds a tennis racket and serves, walking
patterns and so on. This will be termed here as task-
behaviour. There is also the behaviour associated with
the organization, sequencing and scheduling of tasks
and routines. For example, how often the person is
rganizational
behaviour

Task
behaviour

Psychosocial
behaviour

Behaviour

� Spheres of behaviour. Task-behaviour is
d with the interface between the person and their
nvironment. Organizational-behaviour is the
r associated with the organization, sequencing and
g of tasks and routines. Psychosocial-behaviour is
d with the relationships of the individual to others.
bending to lift, how often they are having breaks and
so on. This will be termed here as organizational-
behaviour. Another sphere of behaviour is associated
with the relationships of the individual to others,
which will be termed here psychosocial-behaviour.
Acquiring musculoskeletal pain conditions or injuries
can be associated with actions within any one of, or a
combination of, these behavioural spheres.

Task-behaviour sphere

A person may develop musculoskeletal pain condi-
tions or injury by the way they use their body
in relation to their physical environment (task-
behaviour).11,12,22,27–33 For example, chronic neck
pain can develop in individuals who spend many
hours with their neck flexed in positions above 20
degrees.31,32,34,35 Similarly, individuals who spend
more than half a day sitting in an awkward position
may develop lower back pain.36 Individuals who are
in an occupation that involves repetitive heavy lift-
ing may have a slightly raised incidence of lower
back pain.37 In sports, certain landing techniques
can result in knee injury.38 In cyclists, an unsuitable
seat height or bicycle position, or improperly
adjusted pedal systems, may cause various lower-
limb conditions.39

Within the task-behaviour sphere the aim of guid-
ance is to improve the human–physical environment
interface by either modifying behaviour itself or the
environment. In the case of neck pain it might be to
provide postural advice on ideal neck position or to
make sure the computer screen is placed at a correct
height, etc.40,41 For the cyclist, it would be readjust-
ing the bicycle to better suit the rider.39

Organizational-behaviour sphere

Sometimes injuries are related to the organizational
sphere of behaviour (sequencing, scheduling and
organization of a task). In this scenario a condition
may be prevented or helped by a change in the
scheduling and by introducing variations in the
tasks. For example work-related lower back pain is
associated with repetitive heavy lifting and pro-
longed standing.37,42 Moderate positive improve-
ments can be achieved in the organizational-
behaviour sphere by encouraging the individual to
return to work early and to ask to be given light
duties and breaks, and by applying gradual expo-
sure.37 However, educating workers in bending
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and lifting techniques (task-behaviour) does not
reduce the incidence of back pain/injury.43 It seems
that this condition is acquired within the organiza-
tional rather than the task-behaviour sphere.

In sport, changes introduced within the organiza-
tional-behaviour sphere may help to reduce the
potential for injury. Some sports injuries are due to
overuse and burnout or may be due to fatigue during
competition/games39,44,45 For example, runners and
other endurance athletes can develop a wide range
of overuse injuries in the lower limbs.39 The man-
agement of this group of individuals should be
within the organizational-behaviour sphere, by
introducing breaks/rest periods to reduce fatigue/
exhaustion during training and games.39,45–49 On
the other hand, guidance in the task-behaviour
sphere, say, focusing on kicking or running tech-
nique, may be an ineffective intervention since the
condition is acquired within a different sphere of
behaviour.

Management in the organizational sphere is
important for patients with chronic conditions who
may find themselves in a negative loop – doing too
much when they feel well, so being in more pain,
then having to withdraw from physical activities,
to be followed by a period of doing too much to
catch up with time lost during withdrawal, and so
on (termed activity cycling, Fig. 8.6). This can hap-
pen also to the “overdoers”, often athletes, who
exercise to the point of failure. This group of
patients may benefit from a programme that com-
bines gradual exposure and periods of rest (termed
pacing).

Sometimes the management has to involve both
task- and organizational-behaviour. For example,
patients with work-related neck pain may benefit
from postural advice (task-behaviour) as well as
advice on breaks and coping with high work demands
(organizational-behaviour).40
Feel good

Experience
more pain

Withdraw from
physical activities

Over-exercise
work to catch-

A

Fig. 8.6 � Activity cycling (A) and pac
Psychosocial behaviour

In the last two decades it has become more evident
that the progression of many conditions from acute
to chronic state can be predicted by psychosocial
factors such as low job satisfaction, low support at
work, socio-economic background and psychological
distress.37,42,50,51

The psychosocial-behavioural sphere is probably
outside the scope of rehabilitation in manual and
physical therapies. Where such factors are evident
in the case history, the patient should be referred
to professionals who specialize in this area of work.
Management in behavioural
spheres: an example

A recent population study has demonstrated that
work-related neck and upper limb pain is associated
with repeated lifting of heavy objects, prolonged
bending of the neck, and working with arms at/above
shoulder height, little job control and little supervisor
support.52 Of this pain, 24% was attributed to
exposure to work activities and 12% to exposure to
psychosocial factors. Let’s examine each of these
factors and explore what the intervention might be:
1.
 Repeated lifting of heavy objects – unlikely to be
able to change this work posture. Therefore,
intervention is in the organizational-behaviour
sphere. Solution: providemore frequent breaks,
provide light duties or mixed tasks.
2.
 Prolonged bending of neck – task- and
organizational-behaviour spheres. Solution: at the
task-behaviour sphere, correct working posture
including modifying the work station. On the
organization-behavioural sphere, provide more
frequent breaks and mix with alternative tasks.
Feel good

Moderate
activity and rest

 of
up

B

ing (B).
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3.
 Working with arms at/above shoulder
height – as in 1.
4.
 Little job control and little supervisor
support – this is occurring within the
psychosocial-behavioural sphere and is,
therefore, likely to be outside the management
speciality of physical therapists.

Prevention of injury: more exercise
or task-behaviour?

In regards to prevention of sports injury, several studies
have demonstrated that the frequency of leg injuries
can be reduced by adding a neuromuscular approach
to training (a sort of functional exercising).53–60 The
aim of these approaches is to modify motor control of
specific joints and to improve the position of, andmini-
mize the stress on, specific joints. They are usually a
mix of two rehabilitation approaches: one focused on
underlying motor abilities by introducing functional
tasks, and one focused on extra-functional challenges
such as running, jumping, hopping and cutting tasks.
The training also consists of movement education that
emphasizes proper landing and cutting techniques
(management in the task-behaviour sphere). This
includes advice to land on the forefoot and roll back to
the rear foot, to engage knee and hip in flexion and,
where possible, to land on two feet. Players are trained
to avoid excessive dynamic valgus of the knee and to
focus on the “knee over toe position” when cutting.38

It is possible that movement education (task-beha-
viour) is the more important element in these training
approaches rather than modifying motor control. The
leg injuries often occur in healthy non-injured athletes
and are, therefore, unlikely to be due to underlying
motor control losses. Furthermore, the subjects are
highly trained athletes who are already at peak motor
94
performance. Many of the additional neuromuscular
exercises emulate what the athletes do anyway in
their sport and are, therefore, unlikely to add to their
movement control during the game.

Summary points

• Cognition, behaviour and movement control are
inseparable.

• Behaviour is the observable action of the
individual.

• Certain beliefs, attitudes and behaviour can lead
to chronicity that will affect movement control.

• Helping individuals to modify their injury
behaviour and challenging their beliefs and
attitudes about their condition can facilitate
recovery.

• Musculoskeletal pain and injury can arise in
normal individuals from habitual physically
stressful or inefficient movement patterns, i.e.
behaviour leading to injury or pain.

• Some injuries and pain conditions can be
acquired by the way the person uses their
body in relation to the physical environment
(task-behaviour).

• Some injuries and pain conditions can be
acquired by the way the person organizes
and schedules their physical activities
(organizational-behaviour).

• Helping individuals to modify their task and
organizational-behaviour could help to prevent
musculoskeletal injury and pain.

• Neuromuscular rehabilitation is not just about
exercising.

• Movement control and behaviour can change
solely by cognitive means.
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Managing non-traumatic
pain conditions
While writing this chapter, I was treating a 40-year-
old patient for severe neck pain and stiffness which
have developed over a period of 9 years. The patient
had to stop driving because she was no longer able
to turn her head. She had no history of neck trauma
and the neck imaging was normal. Although active
movements of her neck were severely restricted,
the passive range was almost full, with pain only at
the extreme ranges of rotation. Her condition
started shortly after starting a new computer-based
job, in which she experienced high levels of psycho-
logical stress. This case represents a large group of
the patients who suffer from chronic (and acute)
neck and shoulder pain conditions without any his-
tory of trauma.

There are several such acquired non-traumatic con-
ditions that are now well documented. The upper
body and arms seem to be common areas for these
conditions, including chronic neck and shoulder pain,
trapezius myalgia,1–11 muscular jaw pain12–25 and ten-
sion headaches.26–30 Probably some of the chronic,
non-specific back pains fall into the same group of
conditions.

Although in different areas, it seems that many of
these conditions share similar underlying pro-
cesses.22,24,31 They are all associated with psycholog-
ical-behavioural factors, and are believed to be
transmitted via the motor system to various muscles,
which may, eventually, become painful (Fig. 9.1).

Traditionally these conditions have not been
regarded as being within the sphere of neuromus-
cular rehabilitation; however, they should be.
These conditions have an important motor com-
ponent in their development (possibly) and
persistence. Neuromuscular rehabilitation that
encompasses cognitive and behavioural factors
may have an important role to play in their man-
agement.32–36

From emotion and behaviour
to pain

The non-traumatic pain condition is a curious
entity. It was demonstrated that when a group of
normal and healthy individuals is introduced to a
manually repetitive task, within 6 months about a
third develop a painful trapezius myalgia. This con-
dition is further worsened if the individuals are
experiencing psychological distress.1–5,7–11,37–42

Repetitive low load work and psychological distress
can each be a factor that leads to the development
of this painful condition.43 However, when com-
bined, their effect seems to be magnified. The ques-
tion is: how can pain and movement losses develop
without an injury?

One of the most persistent findings is the
individual’s inability to relax their muscles during
and after the performance of work-related
tasks,4,7,22,24,37,38,44–48 during time off work or lei-
sure activities.2,37,38,45

During any given task there are periods when the
muscles “switch off” or have very low level motor
activity. These have been termed rest gaps or relative
rest periods (Fig. 9.2). Generally, symptomatic indi-
viduals have overall reduced rest periods and there
is a relationship between loss of rest gaps and an
increase in pain levels and loss of range.45,46,48–50
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Fig. 9.1 � The aetiology and progression of A, non-traumatic
pain conditions and B, musculoskeletal injury.
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Individuals who are not in pain and who display such
patterns of muscle activation are believed to be at an
increased risk of developing trapezius myalgia.2,37,38

Lundberg, who has done much research in this area,
states, “it is possible that lack of relaxation is an even
more important health problem than is the absolute
level of contraction or the frequency of muscular
activation”.2

It seems that individuals “learn” a dysfunctional
motor pattern which they habitually use during
times of psychological distress or increased repeti-
tive physical demands.51 The individual may be
unaware that they are tensing their muscles.52–54

When these dysfunctional motor patterns become
habitual they can be more resistant to change and
tend to recur in the same muscle groups: the tension
holding becomes autonomous (Ch. 2).51,55 The per-
son will have to be brought back to the cognitive
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phase of motor learning in order to modify these pat-
terns. The management would focus on relaxation
ability using the principles of motor learning (see
below and Ch. 3).

There seems to be a general trend to tense mus-
cles in the upper part of the body and less caudally
or in the limbs. Upper trapezius and frontalis were
found to be the most common areas for muscle ten-
sion.56,57 This may account for the high frequency
of chronic pain conditions seen in the upper body
such as trapezius myalgia, chronic pain around the
scapula, upper thorax and neck pain.2,11

The inability to relax may also be present in mus-
culoskeletal conditions where there is a history of
injury. In chronic whiplash disorders it has been
found that some of the muscle pain is associated
with an inability to relax.47 This tension may be
related to the traumatic nature of the injury or in
response to ongoing pain.

Changes in the muscle

The lack of rest periodsmay eventually lead tomuscle-
fibre damage, circulatory changes and pain.1–3,56–59

Much of these changes takes place in the “slow twitch”
(type I) muscle fibres, supplied by a low threshold
motor unit.60 During muscle contraction these units
are the first to be activated and the last to switch off
(Fig. 9.3).61–63 It means that even during low-level
physical activity, psychological stress or under high
cognitive demands, these units would be continuously
active.64

A frequent finding in biopsies taken directly from
the tender points demonstrates focal muscle fibre
damage, as well as grossly hypertrophied type I mus-
cle fibres.25,43,65,66,67,68 These are all indications that
the muscle fibre is under excessive mechanical stress
Rest time

Activity time

ng trapezius muscle activity. Loss of
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Fig. 9.3 � The Cinderella fibres. Type II slow twitch muscle fibres tend
to be active throughout the contraction cycle. These fibres are more
likely to show damage and hypertrophy in trapezius myalgia.
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and undergoing cycles of injury and incomplete regen-
eration (Fig. 9.4).22,24,25,69 The damage to cell mem-
branes is associated with a release of pain-promoting
substances locally and within the central nervous
system (CNS).70,71

Another important finding is of reduced microcir-
culation to the damaged fibres as well as indications
of energy crisis within the muscle cell.65,67,71–75 This
reduced flow impairs oxygen delivery and removal of
metabolites in the working muscles and, conse-
quently, will result in muscle pain.65

The areas of damage are associatedwith an increase
in pressure-sensitive points in the muscle.76,77 Repet-
itive activity or exercise tends to increase the pressure
sensitivity and raises the level of pain.70 The patient
Normal fibres

Ragged red fibres

Fig. 9.4 � Local muscle fibre damage in trapezius
myalgia. (From Larssona B, Bjorka J, Henriksson KG, Gerdleb B,
Lindmand R 2000 The prevalence of cytochrome c oxidase negative
and superpositive fibres and ragged-red fibres in the trapezius muscle
of female cleaners with and without myalgia and of female healthy
controls. Pain 84:379–387, with permission.)
often assumes that this pain is due to the muscle’s
being further damaged and inflamed. However, the
non-traumatic pain conditions are not considered to
be inflammatory disorders.78 There are no inflamma-
tory cells in the damaged muscle fibres or tender
points. It only feels like that to the patient.
Message to the patient regarding
non-traumatic pain conditions
• They are associated with only minor (but painful)

changes in the muscles.

• There is low-level damage that is reversible.

• You can exercise as much as you want. It might
be uncomfortable but you will not increase the
damage.

• The pain is not due to inflammation. Anti-
inflammatory medications are unlikely to help.
A secondary hypersensitivity
pain condition?

Part of the experience of pain in the non-traumatic
condition may be associated with a secondary hyper-
sensitivity process. Such hypersensitivity often
develops as a consequence of an ongoing experience
of pain.31,79,80

In essence, the longer a certain nociceptive pathway
is active, the more its threshold is reduced and the
more it becomes sensitized (like a well-trodden path,
Fig. 9.5). It is an adaptive process; a “pain learning
or imprinting” phenomenon that occurs throughout
99
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Fig. 9.5 � Pain imprinting. Prolonged or intense pain experiences may lead to central sensitization.
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the CNS (often termed central sensitization).81–89

Consequently, as time passes, even minor events in
the person’s lifemay trigger disproportionately greater
pain experiences (Fig. 9.6).88,90

Once the sensitization has taken place it is does
not seem to be dependent any longer on nociception
from the damaged tissue; it is now an autonomous
pain condition.91 The pain condition now “resides”
within the CNS and is more open to influence by
other central processes, such as the moods, emo-
tions and cognitions of the individual.
Managing non-traumatic pain
conditions

It was once believed that patients suffering from
non-traumatic pain conditions were suffering from
localized muscle pathology. The therapeutic focus
was in the periphery, targeting the painful muscle.
The treatment often consisted of muscle stretching,
massage, muscle energy technique, trying to switch
off trigger points, and various forms of exercise. In
my clinical experience many of these treatments
have some effect, but with diminishing returns.
The effects would only last for a short time; the
patients remained in a chronic state of pain.92–94
100
It was demonstrated that even the injection of bot-
ulinum toxin into the painful muscles (a toxin that
causes muscle paralysis) has only a temporary effect
lasting about 3 months.19 This study carries an
important clinical message. The therapeutic attention
should move away from treating the periphery – the
muscle or the symptoms of the conditions. But
where should the focus be?

In the last decade the role of psychological–
behavioural processes in these conditions has became
more evident (Fig. 9.7). These studies indicate that
we should be focusing on these processes (“the per-
son”) and away from treating the periphery (the
muscle). A more successful clinical outcome can
be achieved by workplace changes, providing the
patient with a better understanding of their condi-
tion, promoting self-care and engaging the patient’s
coping strategies.95–97 Within this management, the
patient can be trained to relax the tense and painful
areas (see below).

Working with cognitions: changing
the narrative

When individuals are in pain or have an injury, their
beliefs about and attitudes towards their conditions
are constructed into an internal narrative. They may
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Fig. 9.6 � Central sensitization in chronic whiplash syndrome. Injection of an irritant into the muscle results in
wide-spread sensitivity. (From Koelbaek Johansen M 1999 Generalised muscular hyperalgesia in chronic whiplash syndrome.
Pain 83(2):229–234, with permission).
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contain messages that the pain is due to a serious
pathological process affecting the muscles and/or
joints in the neck; that the condition is permanent
and non-reversible and will result in some neck
movement disability. Many patients will withdraw
from physical activities believing that they are
inflicting further damage on their painful tissues.
These attitudes and beliefs hold them back from tak-
ing positive actions that could help them to improve.

Providing the patients with an alternative narrative
can help to reassure and empower them. The alterna-
tive narrative can include information about possible
underlying processes associated with these condi-
tions.95–97 They can be informed that it is not a path-
ological condition in the muscle, that pain is not
necessarily an indication of damage and that the
damage is microscopically small. Since muscle repairs
and regenerates very quickly, once the causes are
removed the muscle is expected to recover fully. It
will not leave permanent damage, and physical activ-
ity, although painful, does not increase the damage.

Sometimes raising the patient’s awareness and
bringing their attention to the sensations in their
body in relation to what they feel can be helpful.
Some patients believe that somehow their muscles
“tense on them”. They might not be aware that they
tense their own muscles and that they may be able
to control the level of tension. The management
aims to bring the patient’s awareness to the situa-
tions where tension rises, as well as exploring with
the patient some coping strategies that would help
them to relax.
101
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Fig. 9.7 � In the non-traumatic pain condition the therapeutic
focus should be towards the psychological–behavioural
dimension of the individual. Treatment of the symptomatic
muscle, in the tissue dimension, is unlikely to provide long-
term solutions. It is attempting to resolve the condition from
the periphery by focusing on the condition’s symptoms rather
than its causes.
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Working with behaviours

Several work-related factors are associated with tra-
pezius myalgia and chronic neck pain. These include
work postures that involve long periods of neck and
arm use in awkward postures, particularly when the
arm is used above shoulder level. Further risk
factors are repetitive bending and twisting of the
upper spine/neck and sedentary work for more than
5 hours a day.39,98–100

We can see from the above that preventive inter-
vention has to be in both the task and organizational
spheres of behaviour (Ch. 8). Task-behaviour is the
way people use their body in relation to objects.
The working posture should be assessed and advice
given where risk factors are identified (if necessary
patients can get themselves photographed at work
using their mobile phones and bring the photo(s)
to the session). Organizational behaviour was identi-
fied as the way people organize their tasks into com-
plex routines. Minor modifications, such as the
introduction of rest periods, reducing the duration
of sitting and/or alternating it with other non-
sedentary tasks may be helpful. Even adding physi-
cal exercise during work has been shown to have a
positive effect on neck and shoulder complaints.101

During periods of stress and/or increased work-
load individuals may be drawn away from coping
102
strategies that could help them to unwind and
self-care. For example, sedentary workers with low
levels of leisure-time activity had a higher preva-
lence of neck disorders.102 It is useful to identify
these coping strategies and encourage the patient
to reintroduce them into their routines. Unwinding
can be a form of leisure activity such as – reading,
sports, exercise, playing a musical instrument, med-
itation or yoga; any activity that brings the person
“back to themselves”. Avoid imposing your own
coping strategies on the patient, find out what
works for them.

Mind over motor: use of relaxation
ability

In the last few years the trend has been to introduce
exercise to individuals suffering from chronic neck
pain and trapezius myalgia, despite the finding
that there are associations with an inability to relax
and overuse syndrome. Very little research has been
carried out to assess the therapeutic value of
relaxation.103,104,105

Relaxation is a motor learning process and, there-
fore, practice should incorporate the five code ele-
ments for neuromuscular adaptation: cognition,
being active, feedback, repetition and the similarity
principle (Ch. 5).

In my experience the approach that had a major
positive therapeutic effect was the introduction of
“focused motor relaxation” and integrating it with
the adaptation code. In this approach the patient
is trained to direct relaxation to the specific painful
areas. This learning can be achieved by different
means: focused relaxation, contract–relax or gentle
elongation to encourage letting go.

Focused motor relaxation could commence on
the treatment table with the therapist palpating
the patient’s neck and shoulder, focusing on areas
where the patients feels pain and stiffness. Using
the hands the therapist provides the patient with
manual or verbal feedback, guiding the patient
through a process of focused motor relaxation (cog-
nitive element). Where tender and stiff areas in
the head/neck/shoulder are found, the patient
is prompted to “soften” them (active element).
An immediate and continuous feedback about
the state of the muscle is verbally conveyed to
the patient (feedback element). Once the patient
is able to relax a particular area, the therapist can
move on to other symptomatic areas, carrying out
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this search-and-relax procedure. The search-and-
relax procedure is repeated several times during
the same and subsequent treatments (repetition
element).

The contract–relax method can be added to
bring awareness to muscles that patients find diffi-
cult to relax. The patient is instructed to “tense”
the affected area, followed by a slow relaxation.
During the slow relaxation the patient is made
aware of the sensation of relaxation in the muscle.
Gentle passive elongation can also be used to
give a sense of length in the shortened, tense
muscle. During this manoeuvre the patient can
experience the “letting go”: how the muscle is
relaxing and elongating. (It is not a stretching
technique for the muscle.)

Missing in this approach is the similarity princi-
ple. Relaxation training on the treatment table is
dissimilar to relaxation during upright posture
and various upper-body tasks. It is also out of con-
text to the place and situation in which the
patient experiences the tension (e.g. work).30

Hence, the relaxation training should be practised
in the postures that are associated with the pain
and tension. For example, computer users are
invited to sit in the typing position (I have a key-
board in the clinic for that purpose). While the
patient is writing or typing, the therapist applies
the search-and-relax procedure on the neck and
shoulders. Verbal and manual feedback is used
to guide the relaxation process. The shoulders
and neck are guided into positions that suggest
the individual is relaxing (e.g. dropping the
shoulders).

The patients are encouraged to transfer the relax-
ation experience to their daily activities: a functional
relaxation. The aim is to achieve movement pat-
terns in which there is minimal tension and optimal
energy efficiency. This functional relaxation com-
bined with biofeedback was demonstrated to
increase the trapezius relative rest time during
computer work.106 This approach is akin to the
relaxation-in-movement used in the Alexander
method. A recent study has shown that six lessons
in Alexander technique combined with exercise
(mostly walking) achieved long-term improvements
for back pain sufferers.107
Managing the painful jaw

A similar focused motor relaxation approach can be
used to manage patients suffering from muscular
jaw pain (bruxism). This condition is marked by
an increased clenching of the jaw and grinding of
the teeth, mainly during the night, resulting in
muscle pain and even in tooth and temporoman-
dibular joint damage.20,21 Painful jaw condition
is also associated with psychological stress and
anxiety states and shares many of the processes
seen in trapezius myalgia, including the loss of
relaxation ability.12–17,24

The same neuromuscular approach described
above is used for managing patients suffering from
jaw pain: focused motor relaxation using the
search–relax method while palpating the different
face/jaw muscles. The patient is guided to “make
their jaw heavy” and “let the teeth separate”. This
is combined with gentle elongation, dropping of the
lower jaw. For the similarity principle the patient is
encouraged to transfer the sense of relaxation to daily
situations and to three key points during the night:
just as they fall asleep, during the night and immedi-
ately upon waking-up (there is some evidence of noc-
turnal spontaneous muscle activity in patients with
lower back pain and patients with chronic trapezius
myalgia).54,108

There are several focused relaxation exercises
that can be given to the patient. They should
remind themselves during the day to make the
“jaw heavy” and to try to keep their upper and
lower teeth slightly separated to prevent clench-
ing. Another is to pronounce the sound “baaa”
(not to be practised in the presence of sheep).
This may seem very silly, but it encourages relax-
ation of the “clenchers” of the jaw. Once the jaw
is relaxed the patient should be able to hold it
and move it freely from side to side. This can be
used by the patient to assess their ability to relax
the jaw.
A note on relaxation ability
Patients with chronic tension headaches and
lower back pain are less able to discriminate
between the different levels of muscle tension at
the painful area.109 They generally overestimate low
and underestimate high levels of muscle tension. For
this group relaxation training for tension headache
was found to be less effective.110

Perhaps in this group of patients we should be
looking at improving the cognitive abilities of
introspection and discrimination?
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Focused motor relaxation is not a general relaxa-
tion technique for reducing general arousal. It is a
behavioural approach that aims to promote motor
relaxation ability during various activities, including
stressful ones.

Non-traumatic pain: the injury
response and exercise

In the non-traumatic conditions the nervous system
may initiate an injury response related to the indivi-
dual’s experience of pain. This response is often dis-
proportionate to the underlying damage, which is
often minimal. As such, the parametric abilities
and synergistic control are likely to be affected.
Indeed, losses in some of these abilities have been
demonstrated in chronic neck conditions.44,45 How-
ever, it should be noted that these changes are more
likely to be the outcome of the condition than the
cause. There is no association between low muscle
strength, low muscle endurance, and reduced spinal
mobility for developing neck pain (also lower back
pain).111

Exercise for non-traumatic pain
conditions

The injury response to the experience of pain has
led several groups to develop neck and shoulder
exercises to overcome these control changes.

Several studies have demonstrated some benefit
from various forms of exercise in the reduction of
the symptoms of trapezius myalgia.103,112–116 These
include strength and/or endurance training,117 non-
specific general exercise and specific neck exer-
cises.35,118 Interestingly, also useful were Qigong
and coordination exercises, which promote relaxa-
tion and movement efficiency. 36,114,115,119 How-
ever, exercise is only of limited benefit when
compared to other interventions (massage, ergo-
nomic advice),93,94 and their effects tend to dimin-
ish over time.115 In order to sustain some effect, the
individual would have to maintain a punishing,
ongoing exercise regime.

Treating the consequences, i.e. the symptoms,
may provide temporary relief, but does not solve
the underlying problem – exercise by itself is not
motor rehabilitation. The person will “learn” the
specific exercise control, but it will not transfer
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to control for daily functional patterns.120 This is
important, as it became fashionable to apply the
core stability type training to the neck. This
includes using “the hammer” of force and endur-
ance to beat the system into shape. It is often
accompanied by exercise that aims to modify the
onset timing of the deep and superficial neck
muscle using the erroneous concept of focusing
on particular muscles and extra-functional
movement patterns. Such approaches do not
transfer to control of normal functional neck
movement.120

It is curious why exercise should have a positive
effect for individuals who are suffering from an
overuse condition and an inability to relax. Fur-
thermore, how it is that such different exercise
approaches have a positive effect? Generally, when
everything seems to work, something else is hap-
pening. Probably the main reason for improvement
with exercise is to do with psychological factors
that include empowerment of the patient, reduc-
ing fear of use and providing a proactive coping
strategy to pain. This phenomenon is seen in
patients with chronic back pain, where all forms
of exercise seem to be equally effective in improv-
ing this condition.121

It is also possible that exercise has a modifying
effect on pain mechanisms associated with central
sensitization rather than eliminating the causes.
Another possibility is that, exercise may bring about
adaptive changes that reverse some of the damage
seen in the affected muscle fibres73,122–124 as well
as helping to re-establish normal perfusion to the
damaged fibres.125–128 However, all the physiologi-
cal effects of exercise are likely to be temporary if
the patient stops exercising and the underlying
causes are not dealt with.

A neuromuscular rehabilitation approach
to neck exercise

Any exercise can be used for reassurance, including
the ones described above. However, these exercises
are dissimilar to normal neck movement. Most func-
tional head movements are non-contact, whereas
resistance exercises are all in contact (Ch. 2). Also
the head follows our senses or leads in certain activ-
ities such as walking and turning. Hence, it might
be more beneficial to challenge neck control in
contact-free and goal-orientated movement.
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This control can be challenged, for example, by
instructing the patient to draw imaginary numbers
in space leading with the tip of their nose
(Fig. 9.8,a,b&c). Sets of numbers from 0 to 10 can
be used in different head positions (Fig. 9.8a).
During the exercise the patient is instructed to
relax their neck and shoulder muscles and to
attempt to perform the movement as smoothly as
possible. This is to account for the finding that
patients with chronic neck pain tend to have more
“jerky” neck movements (due to reduced coordina-
tion and synergistic abilities).129

Another exercise is to repetitively nod the head in
a “Yes-Yes” (Fig. 9.8b), “No-No” (Fig. 9.8c) patterns
throughout the range of rotation (see Video, part 3).

Clinical notes on passive and active
approaches

So what should we prescribe to our patients, exercise
or relaxation or both? A pragmatic approach is needed
here. Basically, try one approach and if it does not
produce the expected results, move on to another.
A

C

Fig. 9.8 � Challenging movement control of the neck. In all the
and neck, and to perform the movement as smoothly as possible
of rotation. B, Small amplitude “Yes-Yes” movement and C, Pati
movement patterns at the end range.
Generally, start with a relaxation approach and
the number-counting exercise. This approach
requires the least commitment of time and effort
from the patient, and it can be easily applied at
work or in stressful situations. This approach could
be useful if the patient is suffering from high levels
of pain. The active approach/exercise may be left
out if the patient improves and shows signs that
the relaxation approach is sufficient for maintaining
the improvement (I would usually expect improve-
ment within 3–6 weeks).

If the patient is not showing signs of improve-
ment then use an exercise approach. This can be
introduced in a gradual manner, using some of the
techniques described above.

If the patient has a history of exercising, they
should be encouraged to return to their sporting
activities. They are also more likely to take on any
exercise given by the therapist. If the patient has
no such history they are unlikely to adhere to exer-
cise. In this case the therapist may return to the
relaxation option. This, of course, does not exclude
the concurrent use of relaxation and exercise
approaches.
B

procedures the patient is instructed to relax their shoulder
. A, drawing imaginary numbers from 0 to 10 at the end range
ent is instructed to perform repetitive, small amplitude “No-No”
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Summary points

• Individuals may acquire painful musculoskeletal
conditions without injury.

• Often these conditions develop in low-load,
repetitive physical activities (e.g. using a
computer).

• They may also develop in response to
psychological distress.

• These conditions often manifest as pain and
tender points around the head (tension
headache), suboccipital area, neck and neck-
scapular muscles (trapezius myalgia) and jaw
(bruxism).

• Probably some forms of non-specific lower back
pain are also associated with this group of
conditions.

• All these conditions share similar processes:
inability of the individual to relax, transmission
of tension via the neuromuscular system to
specific muscles, hypertrophy and damage of
specific muscle fibres and disturbance to
microcirculation, and release of pain-related
substances locally.

• A secondary, central pain sensitization may play
an important role in the pain experience.
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• Intervention should be all-inclusive – a
combination of cognitive, psychosocial,
behavioural and neuromuscular approaches.

• The aim in the cognitive dimension is to reassure
and empower the patient to self-care.

• In the behavioural dimension the individual
should be assessed and guided in their task and
organizational behaviour.

• Focused motor relaxation should be used to
train the individual in how to relax their painful
muscles/areas.

• Focused motor relaxation is a motor learning
experience. It is not about reducing arousal.

• Transferring the relaxation to functional daily
activities is important. Promote relaxation-in-
movement.

• The patient’s own coping strategies are very
important for reducing stress and chronic states
of arousal.

• Exercise can provide temporary relief from pain.
However, it has only limited and short-lasting effect.

• Pain cannot be beaten into submission! Avoid
punishing exercise regimes and avoid painful
manual techniques.

• Neuromuscular rehabilitation is also about motor
relaxation.
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Neuromuscular consider
10

ations

in managing individuals with
central nervous system
damage
A young teenager with cerebellum tumour, with
loss of coordination and balance, a young sports
person with partial cervical cord damage with com-
plex movement control losses, a stroke patient who
has little use of one side of the body. These
patients are presenting with extensive and diverse
motor losses. How can neuromuscular rehabilita-
tion help and how would the management differ
between the conditions? Would it be different
from neuromuscular rehabilitation of musculo-
skeletal injuries?

From a movement-control perspective the main
difference between patients with intact and with
damaged central nervous systems (CNS) lies in the
magnitude of motor losses and the potential for
recovery. Central damage is associated with more
extensive motor control losses, longer rehabilitation
duration and, frequently, only partial recovery.1

However, the underlying principles of rehabilitation
remain unchanged: the use of a functional approach
in rehabilitation, the use of skill and ability-level
rehabilitation and applying the principles of motor
adaptation (Table 10.1).
The motor process in
central injury

From a functional perspective CNS damage can be
viewed as a processing failure and miscommunica-
tion within the motor system (Fig. 10.1). It is the
incomplete and fragmented progress of the motor
process from one stage to another: the organizer of
movement has become partly disorganized.
Damage to the higher centres may impede the
individual’s ability to perceive incoming informa-
tion, analyse it, integrate the information into move-
ment strategies and carry out a skilful action.2

Furthermore, under normal circumstance the spinal
motor centres are under the dominant and integra-
tive influence of the higher motor centres. Follow-
ing damage to the higher centres, activity in the
spinal motor centres may become disorganized,
resulting in dysfunctional muscle recruitment and
reflexes (Fig. 10.1).

Abilities affected

Central damage can result in complex and widely
varying movement control losses. A description of
all the potential damage and related functional
changes is outside the scope of this book. However,
the observable control changes can be analysed using
the motor complexity model (Ch. 3).

In CNS damage there will be direct control losses
in composite abilities, as well as synergistic and para-
metric abilities (Fig. 10.2).3 In central damage the
change in abilities represents real losses, whereas in
the intact system, such as in musculoskeletal injuries,
the change in abilities is mostly a strategic reorganiza-
tion of movement. Hence, central damage is more
difficult to recover than adaptive reorganization.

Within the parametric abilities, force control is
commonly affected, with either loss (hypotonic)
or abnormal increase in involuntary force seen as
hypertonicity.4–7 Some patients may find it diffi-
cult to “turn the muscle off,” which also repre-
sents loss of force control (Ch. 3). Interestingly,



Table 10.1 Difference and similarity in neuromuscular rehabilitation for individuals with intact and damaged central nervous system

Factors in
neuromuscular
rehabilitation Central nervous system

Intact Damaged

Functional approach Easily applied for most

conditions

Use what the patient already knows

May have to use extra-functional for those with severe motor losses

Cognitive Cognitive elements easily

applied

Use external focus

May suffer from cognitive losses, which would impede motor recovery

May need to revert to internal focus and use motor imagery

Being active Engages the full motor

process

As in intact

In complete loss of voluntary movement the patient may need passive

movement

Feedback Acuity changes, often minor

Feedback using verbal

visual and manual guidance

True proprioceptive loss

Feedback same as in intact, but therapist may need to stimulate

proprioception by passive movement if patient unable to move

Repetition Varied practice with random

mix of tasks

May benefit from tasks that are practised individually, repetitively and

with little variation

Similarity Keep it similar to functional

movement

As in intact.

In severe losses, where functional movement is not possible may have

to use extra-functional movement

Recovery duration Weeks Months to years

Recovery success Mostly full Partial

Integration-
organization

Dysfunctional movement

Motor Motor

Sensory

Higher element of
the  motor system

Lower element of
the motor system

Integration-organization

Fig. 10.1 � In central nervous system damage
there is interruption to the normal organization of
motor processes. Under these circumstances,
the lower more reflexive elements of the motor
system may become more dominant.
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when a stroke patient is taught how to relax the
forceful reflexive hypertonic muscle, a weak vol-
untary force ability is often found to be underlying
it.8 Velocity is often affected, with the patient
only able to produce slow movements in a limb
114
or during more general patterns such as walk-
ing.9,10 A change in velocity control may also
manifest as a sudden loss of control at certain
angles within a movement range. For example, a
stroke patient may be able to move the knee into



Parametric abilities

Synergetic abilities

Composite abilities

Skills

Fig. 10.2 � In central damage it is likely that most motor
abilities will be affected.
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extension while maintaining a constant velocity; at
a certain angle the movement will be taken over by
a fast reflexive extension. Length control often
manifests as chronic dysfunctional shortening of
the hypertonic muscles.11

Various factors within movement synergism are
likely to be affected by central damage. It will
include failure relative force, velocity and length,
timing and duration of muscle activation,12 or the
dominance of one of the synergistic patterns.13 For
example, the hypertonicity and rigidity during move-
ment can be seen as uncontrolled co-contraction.13,14

Dynamic co-contraction loss can be seen in patients
who can control movement in one plane, as long as
they are supported bilaterally. Joint flexion contrac-
tures can be viewed as the dominance of one group
of muscles over its synergistic group.9 Loss of rhyth-
mic movement such as arm swing can be viewed as
loss of reciprocal activation.

The composite abilities can be affected either
directly or due to the knock-on effect from para-
metric and synergetic ability losses. This would
include losses to all coordination levels.11,15 Loss
of fine control can often be seen as the inability
to manipulate objects with the hand.16 Single-limb
coordination loss is often evident as the inability to
control the movement at a specific joint, or to inte-
grate it with other joints into a synchronous limb
movement.17,18 Multi-limb coordination losses are
often seen in activities such as rhythmic arm
swinging during walking,19 where each side can be
swung separately but not together. Similarly
whole-body dis-coordination is evident in loss of
synchronization of the different body masses dur-
ing movement.10,20
Relaxation ability is also important in rehabilitat-
ing movement control in patients with central dam-
age. It is the flip side of motor activation: it requires
motor control and, hence, may facilitate recommu-
nication within the motor system; helping to re-
establish central inhibitory influences. Basmajian21

pointed out that patients with CNS damage can
fully relax their hypertonic muscles to electromyo-
gram (EMG) silence. A potent long-term control
of hypertonicity could be to teach the patient
focused motor relaxation of the affected muscles
(Ch. 9). For example, in one particular stroke
patient, the hand and wrist were locked solid into
flexion contracture over a period of 5 years. Initi-
ally, the patient’s partner would have to use all her
strength to prise the hand open. Using focused
motor relaxation, the patient learned to overcome
this motor pattern and maintain the hand relatively
relaxed and unclenched. This improvement
remained unchanged and is maintained throughout
the day and night (autonomous phase of learning).

Patients with central damage may present with a
longer transition time when performing a variation
within the same or between dissimilar tasks, e.g.
the transition time to turning around during walking
or from sitting to standing.22

Balance ability/postural stability is frequently
affected in CNS damage.23,24 It can arise from cen-
tral balance losses or represent loss in other compos-
ite abilities, such as whole-body coordination or
synergistic control in lower limb or trunk.25

The patient’s clinical progress may not trans-
late immediately into improvement in daily activ-
ities.23 In order to perform a particular skill
several underlying abilities need to recover to a
certain critical level. A patient may have difficul-
ties in raising their hand to the mouth, although
the force and speed of arm movement may have
improved. This could happen if there is a lag
in improvement in other abilities, such as single-
limb coordination or synergistic control at a
specific joint.
Sensory-proprioceptive abilities

Proprioceptive losses are often varied and include a
reduced perception of joint position and of move-
ment, and an inability to feel muscle activity or to
determine the force used. It will also affect the
more complex sensory abilities such as limb/body
orientation and composite sensory ability.
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The proprioceptors are still “out there”, but the
centre cannot perceive them. This preservation of
peripheral mechanisms of proprioception provides
the potential for re-communication by the “rewir-
ing” of alternative routes (Ch. 6).

Under normal circumstances the motor system is
centrally controlled with proprioception providing
feedback (Ch. 2). Following central damage, there
is a loss of the dominant integrative influences from
supraspinal centres. The consequence may be an
increase in the influence that proprioceptors have
over the lower spinal motor centres. Consequently,
the segmental influence of the mechanoreceptors
will become exaggerated, resulting in dysfunctional
muscle activity and reflexes.26 Such reflex responses
seem to be more prominent during passive stimula-
tion of the limb.27 When the limb is actively used,
these reflex influences tend to diminish,27 probably
due to the overriding influences of the higher cen-
tres. Hence, using active movement during rehabili-
tation may be more useful than trying to abolish
the dysfunctional reflexes.
Sensory ability

Cognitive abilitiesM
ot

or
 a

bil
itie

s

Skill

Fig. 10.3 � In central damage the skill of movement may be
affected due to losses in cognitive, sensory and motor
abilities.
Neuromuscular rehabilitation
in central nervous system
damage

The aim in neuromuscular rehabilitation is to facili-
tate recovery by providing movement-related cogni-
tive stimulation and physical challenges.28,29 In
response to such physical challenges the nervous
system has been shown to undergo remarkable neu-
ral plasticity with related improvements in move-
ment. This plasticity is marked by formation of
new pathways by neuronal sprouting, formation of
new synapses and the shifting of movement integra-
tion to non-affected parts of the brain (Ch. 6).28–43

The treatment programme consists of the three
basic principles of neuromuscular rehabilitation:
functional movement (using what the patient
already knows), focus on skill/ability-level rehabili-
tation depending on the patient’s capacity and facil-
itating more effective long-term neuromuscular
recovery by the use adaptation code elements.
Patients who have suffered substantial motor losses
and who cannot perform any functional movement
could be started on ability-level rehabilitation.
Equally, rehabilitation should not regress to a level
below the patient’s movement capacity (Ch. 11).
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Using the code for neuromuscular
adaptation

Use of cognition

Cognitive abilities play an important part in the
capacity to learn and recover functional movement
in patients with CNS damage (Fig. 10.3).2 Working
in the cognitive dimension includes the use of atten-
tion and focus, and providing the patient (and their
carers) with the understanding of the treatment
goals and the principles used to achieve them.
Patients who suffer cognitive losses may find it dif-
ficult to utilize these cognitive strategies and conse-
quently a slower rate of recovery. Some of these
cognitive abilities are described in Box 10.1.

Within the cognitive dimension internal and
external focus is used pragmatically. The ideal is
external focus on the goal of movement or overall
task. This fits well with skill-level rehabilitation.
However, some patients who have major movement
losses may revert to using internal focus.

The ultimate aim of the treatment is to move
from the cognitive to the autonomous/subconscious
execution of movement. This can be achieved by
adding simultaneous activities (multi-tasking) that
require a different focus of attention.

Being active, feedback and repetition

The patient should be encouraged to actively per-
form the movement whenever possible. This will



Box 10.1

Cognitive abilities: the ability to perform a motor
task is partly dependent on the cognitive abilities
of the patient

• Attention or concentration

• Ability to initiate, organize or complete tasks

• Ability to sequence, generalize or plan

• Insight/consequential thinking

• Flexibility in thinking, reasoning, or problem-
solving

• Judgment or perception

• Ability to acquire or retain new information

• Ability to process information
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engage all the different motor stages (Ch. 2). Active
movement is ideal, but if not possible, start with
assisted passive movement. In hemiplegic stroke
patients, passive movements elicited some of the
brain patterns seen during active movements.44

Feedback can take several forms. It can be in the
form of verbal or visual guidance, by demonstrating
the movement. Manual guidance can be used to assist
and correct movement pattern. Intrinsic feedback
(proprioception) can be stimulated by passive move-
ment, skin rubbing, firm holding and massaging. Sev-
eral studies have demonstrated that such sensory
stimulation can improve the sensory andmotor ability
of stroke patients.45–47 However, passive forms of
sensory stimulation are only likely to have a limited
effect on motor learning/adaptation (Chs 2, 4 & 13).
Proprioception may be enhanced by performing the
movement with eyes shut. Conversely, vision can be
used if proprioceptive loss is extensive.

In stroke patients repetition has been demon-
strated to improve walking distance and speed, sit-
to-stand tasks and the activities of daily living.48 It
was demonstrated that repetition can give positive
gains in performance of a task even after one day
of training.49 On the first appointment I tell the
patient and their carers to remember the three
“Rs” – Repetition, Repetition and Repetition!50

Similarity principle

The patient’s own movement repertoire is used dur-
ing the rehabilitation. This is in line with the func-
tional approach similarity and context principles
discussed in Chapter 5. If walking is being rehabili-
tated, then walking should be practised. If sitting to
standing is being rehabilitated then this should be
practised, and so on. This is the message that has
been repeated is recent systematic reviews.51,52

Underlying abilities should be challenged within
functional movement. A reaching movement can be
practised at different force levels, directions, speeds
and repetitions (parametric abilities), using the full
cycle of the paired movement, e.g. reaching and
withdrawing the arm (synergistic ability). This move-
ment should also be integrated into other composite
abilities such as multi-limb coordination or organiza-
tion rate. Coordination should be practised with
movements that are similar to daily activities. This
should include a mixture of single-limb, multi-limb
and whole-body coordination practice.53 Even bal-
ance ability should be practised in context. If walking
balance is affected, balance should be practised in
walking (dynamic balance) and not in standing (static
balance). Standing balance may not transfer well to
walking balance.24

When working with patients with low movement
capacity rehabilitation might need to stray from the
similarity principle. It may have to regress to ability-
level rehabilitation on the treatment table or other
body-support systems. However, the ultimate goal
should be functional rehabilitation at skill level.
Summary points

• Many of the principles of neuromuscular
rehabilitation can be applied during the
management of individuals who suffer CNS
damage.

• Both skill- and ability-level rehabilitation should
be used simultaneously.

• The rehabilitation plan should contain the motor
adaptation elements – cognition, active,
feedback, repetition and similarity.

• Keep the training as close as possible to daily
functional movement.

• Avoid complex movements that are not
within the normal movement repertoire of the
individual – train them in something they already
know (but can’t do).

• Neuromuscular rehabilitation in central system
damage is a long-term process, psychologically
and physically demanding for both the patient
and the therapist. Make it fun, interesting and
continuously challenging.

• There is nothing like one brain to stimulate
another.
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11
Developing a rehabilitation
programme
This chapter aims to provide a framework for neu-
romuscular rehabilitation using the principles of
motor control and adaption.

We can learn about sensory-motor rehabilitation by
observing what individuals naturally do when they
attempt to recover their movement losses. Most fre-
quently they tend to use a mixed strategy of re-abilita-
tion within skill-level rehabilitation. For example, a
person with a shoulder injury, after a short period
of rest, will attempt to use their shoulder in what looks
like a challenge to the movement parameters (para-
metric abilities). They will try to reach further (chal-
lenging length control), progressively lift heavier
objects (challenging force control) and attempt tomove
faster to reach (challenging velocity control). They will
tend to increase the number of repetitions of specific
tasks or to sustain particular arm postures as a challenge
to endurance.Within that behaviour, a personwill often
be aware of what is wrongwith theirmovement and try
to correct it (cognition & feedback). They will be
actively seeking to improve it (being active), they will
repeat the action numerous times (repetition), and
these challenges will be performed within their daily
routines (similarity and functional movement). This is
nature’s “gold standard” for self-recovery.

Neuromuscular rehabilitation follows the same
strategy. It uses three key principles:
1.
 Use of functional approach in rehabilitation
2.
 Use of skill/ability-level rehabilitation
3.
 Use of the code for neuromuscular adaptation.

The rehabilitation programme follows these prin-
ciples using a threestep process. The first step is to
identify activities from the patient’s movement
repertoire which will specifically challenge their con-
trol losses. The next step is prioritizing the level at
which rehabilitation will be used (ability/skill levels).
Within the ability level it includes identifying and
challenging specific control losses/changes. Finally,
the motor adaptation elements are incorporated into
the overall management.

The recovery of motor control is an intrinsic per-
son/body process. The role of neuromuscular reha-
bilitation is to create ideal conditions in which
this process is optimized.

A functional approach

The aim of a functional approach in rehabilitation is to
utilize movements that the patient already knows
rather than teaching them something new (extra-func-
tional, see Ch. 1). The challenges to the losses are
selected from the patient’s repertoire of general and
special movement skills. This process of selection can
be exemplified by the case study of a patient who
had suffered acute peripheral nerve damage brought
about by a disc prolapse. After spinal surgery she was
leftwith amoderate foot drop.The special skillswithin
her functional repertoire included performing music
and treadmill running in the gym. The challenges for
the leg and foot were selected from these movement
experiences (Fig. 11.1). From the general skill level,
the challenges included climbing stairs, two stairs at a
time, walking on the heels or toes, balancing on the
affected side, gentle forward lunges onto the affected
foot or lunges initiated from the affected side. From
the special-skill sphere, movements included foot
tapping to music with the forefoot or heel (which she
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Fig. 11.1 � Movement challenges can be selected from the patient’s own functional repertoire.
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Fig. 11.2 � Rehabilitation can be at skill- or ability-level.
Skill-level rehabilitation aims to restore movement losses by
practising the movement affected. Ability-level rehabilitation
(re-abilitation) focuses on challenging underlying motor-ability
changes/losses.
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does all day), graded running on the treadmill in the
gym and so on. The alternative would be to use extra-
functional challenges (for her) such as introducing a
wobble board, resistance bands or exercise machines
at the gym, activities of which she has no experience.
Is this approach more effective and one which she is
more likely to adhere to (Ch. 1)?

Skill-level rehabilitation and
re-abilitation

The next step in the rehabilitation process is to
decide whether it should be at skill or ability level.
Skill-level rehabilitation aims to engage the individ-
ual in executing their losses as closely as possible to
the skills which have been affected. Ability-level
rehabilitation (re-abilitation) aims to challenge spe-
cific losses in motor abilities (Fig. 11.2).

Skill-level rehabilitation assumes that by practising
the affected movement/skill, the underlying motor
“inabilities” will be challenged and, consequently,
recover. Hence, for the patient described above much
of the movement control of the leg and foot would be
expected to recover by the time she returns toweight-
bearing activities. These functional activities by them-
selves, and without further modification, will help to
recover these particular movement losses.

However, some patients may present with persis-
tent dysfunctional movement control, regardless of
the fact that they are active (assuming that tissue
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repair processes have resolved). There could be sev-
eral reasons for this:
1.
 Cognitive/psychological factors, injury beliefs
and attitudes
2.
 Persistent pain or fears of it
3.
 Behavioural factors, such as task- or
organizational-behaviour factors
4.
 Movement reorganization to injury ending up
as an habitual movement pattern
5.
 Reorganization/change/losses in sensory-motor
abilities.
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Cognition about injury and pain, persistent pain and
fear of it, behavioural factors and habitual patterns
are all manageable within skill-level rehabilitation.
In these conditions movement control is optimized
by cognitive and behavioural means (Ch. 8) and there
is no need to focus on specific motor losses.

There is also a possibility that imperfect practice
leads to imperfect performance, i.e. when a patient is
in pain they use, and inadvertently “learn”, injury-
relatedmovement strategies. These patternsmay per-
sist evenwhen the patients are no longer in pain. In this
scenario, the rehabilitation is still at skill level, where
the patient can be made aware of their movement
“shortcomings”. This is movement learning in a task-
behaviour sphere and would be in the form of kinaes-
thetic feedback, providing information about the
details and “correctness” of the movement (“hold
the racket this way”), the movement sequences
(“swing it like this”) or the quality in performance
(“good shot”).

Another possibility is that certain underlying abil-
ity losses/changes maintain the movement dysfunc-
tion (motor inability). These inabilities could be
residual elements of a control system that is still
functioning in an injury mode (assuming there is
no permanent and extensive tissue damage and the
patient is not in severe pain). For example, the
inability of a patient to execute a reaching move-
ment (skill) may be due to local force or coordina-
tion losses in the arm (ability). A person with
central nervous damage may be unable to walk nor-
mally (skill) due to losses associated with control of
balance (ability).

In contrast to skill rehabilitation, at ability level,
the challenges (training/practice/exercises) are spe-
cific to the underlying ability losses. In the case of
balance, the therapist may challenge the patient’s
balance ability while standing or walking (Ch. 12).
In the example of reaching, the underlying force
or coordination abilities would be challenged during
the reaching movement. In both of these examples
the rehabilitation is challenging the particular inabil-
ities within the skill level. This ensures that the
treatment obeys, as closely as possible, the similar-
ity and context principles.

It is not entirely clear why underlying inabilities
do not spontaneously recover with normal functional
movement. One likely possibility is that individuals
may use movement strategies that circumvent and
avoid an effective challenge of their motor losses.
This may be observed in a person with balance inabil-
ity. They may compensate for their losses by walking
with a wider gait pattern, with shorter step intervals
or shuffle along. They may simply avoid or minimize
activities that are related to their loss. These patients
would benefit from ability-level rehabilitation, as dis-
cussed above. In contrast, skill-level rehabilitation,
which would encourage the patient to increase their
walking distance, may not be effective in recovering
balance ability. All that may happen is that patients
will become very skilled at using the dysfunctional
gait patterns.

In summary, the main difference between skill-
and ability-level is that skill-level focuses on the cor-
rectness of movement or task. The patient is simply
encouraged to carry out the movement that they are
unable to perform. It may require some task-
behaviour guidance but not special treatments or
specific challenges that are beyond functional move-
ment. Re-abilitation, on the other hand, requires
more specialized, focused and specific challenges
that target the underlying inabilities.
How to choose the level
of rehabilitation

Generally, the treatments integrate skill- and ability-
level rehabilitation, with the emphasis shifting between
the two modalities.

Re-abilitation is rarely used outside the context
of skill level. This would happen only for patients
who have severe CNS damage, musculoskeletal
injuries or post-surgery and who are unable to carry
out any functional movement. For example, force
re-abilitation may have to commence on the treat-
ment table for a patient who cannot stand due to
complete force losses in the leg. However, once the
patient is able to weight-bear, the force re-abilitation
should be in upright postures, i.e. re-abilitation
within the context of a skill.
Merging the adaptive code
with rehabilitation

The five elements of motor adaptation – cognition,
being active, feedback, repetition and the similarity
principle – should be integrated into both skill- and
ability-level rehabilitation. Once a movement pat-
tern/task has been identified as the goal of rehabili-
tation the patient should be made aware of its aims
and focus on it (cognition). They will benefit from
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the therapist’s guidance/aid (feedback). The move-
ment should be repeated during and after the clini-
cal session and resemble real functional patterns
(repetition and similarity).

Similarity spheres

Similarity and context were identified as two of the
key principles of motor adaptation (Ch. 5). They
imply that effective rehabilitation is achieved when
the training is similar to the goal task/skill. Perhaps
it is important to examine what rehabilitation
should be similar to. This depends on the functional
repertoire of the person, the abilities affected, and
which area of the body is the focus of treatment
(Fig. 11.3). Hence, rehabilitation is often a combi-
nation of applying the similarity principle in these
spheres:

• Skill

• Ability

• Functional characteristics of body area.

Skills can be divided into two broad areas. One
comprises the general skills of doing everyday col-
lective activities necessary for basic human needs
(walk, stand, run, sit, dress, eat, etc.). The other
comprises all the special activities that people
undertake outside their daily actions, such as
specialized occupational skills, sports, and physical
hobbies (special skills).

Generally, treatment progresses from recovering
the general skills to recovering the special skills.
This sequence is used because the special skills
often require a higher degree of motor control,
Trunk

ArmArm

General or special skills

Motor abilities

Leg

Fig. 11.3 � Spheres of similarity.
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impose greater physiological and physical demands
on the body and hence involve specific and more
extended periods of rehabilitation. However, it does
not exclude the possibility of starting at the special
skill level if the general skills have recovered prior
to rehabilitation.

These considerations will have an important
bearing on the design of treatment. For example,
leg rehabilitation of a tennis player and an office
worker will share similarities in the general skill
but different in the special skill spheres. An office
worker may need leg rehabilitation that will pro-
mote normal functional daily use of the leg, i.e.
walk, stand, etc. A tennis player would need a simi-
lar general skill rehabilitation as well as special skills
rehabilitation. The challenges would include move-
ments that resemble the actions of playing tennis
such as jumping, lunging, sudden acceleration, sud-
den change of direction, explosive force, etc.

Another similarity consideration is which particu-
lar abilities have been affected. At ability level, treat-
ment should seek to be specific to the underlying
inabilities (see more below). As discussed elsewhere
(Ch. 5), balance losses should be rehabilitated with
balance challenge and force losses with force chal-
lenge. But balance cannot be rehabilitated by force,
nor force by balance.

Also important within the similarity principle is
which part of the body is rehabilitated. Clinically,
the functional characteristics of the different body
areas can be summarized into three broad groups:
upper limb including hand, lower limb and trunk
including head and neck. Obviously, arms don’t do
the actions that legs do. Therefore, leg rehabilitation
ismore aboutweight-bearing activities, such as balanc-
ing, walking, stepping, etc. Arm rehabilitation is more
about reaching, holding, lifting, fine manipulation of
objects, etc. Hence, knee rehabilitation is within the
context of what a knee does, within the context of
what a leg does, within the context of what the person
does. Thiswould be verydifferent from shoulder reha-
bilitation, which would be executed within the con-
text of what the person does with the arms.

This may seem like an obvious principle. How-
ever, often patients receive movement rehabilitation
which is totally unrelated to the function of the par-
ticular part of the body. This includes floor exercise
(core stability) for trunk rehabilitation, balancing
exercise for the arm (using a Swiss ball), and lying,
straight-leg rises to strengthen the leg muscle. All
these rehabilitation regimes are totally dissimilar to
the function and control of that particular body part.



Table 11.1 The similarity grid

Name the tasks
affected:

Tick
box

1. Body

area

Arm

Trunk

Leg

2. Ability Parametric Force

Velocity

Length

Endurance

Synergistic Co-contraction

(stability/steadiness)

Reciprocal activation

(movement)

Composite Coordination

Balance/postural

stability

Transition rate

Relaxation

3. Skill General List activities:

Special List activities:

C H A P T E R 1 1Developing a rehabilitation programme
In Table11.1 the similarity grid is introduced as a
clinical tool to help to develop the rehabilitation that
is specific for their functional experience, remains
close to the similarity principle and is specific to the
control losses. It helps to identify the three areas of
similarity that are particular to the individuals and
their condition. The similarity grid should be used
together with the history notes and clinical findings.
It is a management and not a diagnostic tool. Copies
of the similarity grid can be downloaded at www.
cpdo.net/neuromuscularrehabillitation.

The similarity grid by an example

Let’s look at the similarity grid using the patient with
the foot drop as an example. The patient feels that the
foot is weak and unsteady in all weight-bearing activ-
ities. Her sports activities are mainly running. How
can we design the assessment and rehabilitation?
Using the similarity grid we can start the process by
testing the underlying parametric/synergistic abilities.
It was identified that control of force, length, velocity
and endurance has been affected (tick the appropriate
boxes on the grid, Table 11.2A). This control loss is
affecting the movement pairs in the foot (flexion–
extension/inversion–eversion). This loss is present in
static and dynamic of the foot, implying loss of control
in the two synergistic patterns (tick “co-contraction”
and “reciprocal activation” boxes). As a knock-on
effect she has postural instability when attempting
to stand on the affected leg (tick related box). Next
on the grid is the body area in focus (tick “leg” box).
Finally, the losses in the leg are influencing all the gen-
eral and special skills such as running (tick related
boxes). By observing the grid, the management and
the type of challenges are mapped out clearly (see
description at the beginning of this chapter).

Let us look at another example: the young tennis
player who gradually developed knee pain due to
dragging his leg on the ground when side-stepping
(from Ch. 5). Examination of the limb revealed no
motor losses. Tenderness was found on the medial
aspect of the knee and it was diagnosed as a mild
strain. The pain occurs only when he is playing ten-
nis, so we can tick the “special skills” and the “leg”
boxes (Table 11.2B). The fact that the onset of
the condition was gradual implies that while playing
he is habitually using a pattern that may stress the
knee (rather than a traumatic injury). Hence, the
management will be at skill-level focusing on the
task-behaviour, correcting his side-step. Yes, it can
be as simple as that. What is important here is that
the grid is helping to prioritize the management but
also suggesting what not to treat.

Another example is to look at the grid and the
patient described in Chapter 10, who is suffering
from chronic neck pain. Her conditions started gradu-
ally when she started a stressful computer-based job.
She had no history of head/neck trauma. On examina-
tion, she had marked reduced neck rotation (Table,
11.2C, tick “length control”) and loss of movement
smoothness at the end ranges (tick “coordination”
and “reciprocal activation”). We suspect from the his-
tory a loss of relaxation ability (tick box), which
affects her throughout the day and during work (tick
boxes). The management of this patient is described
in Chapter 10.

Finally, in Table 11.2D is a description of a
chronic stroke patient with mixed presentation on
one side of the body: here all the boxes are ticked.
This is to demonstrate the difference between man-
aging a person with an intact and one with a damaged
CNS. The general rule is that the more this grid fills
up, the more extensive and complex is the patient’s
condition, often reflecting central damage.
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Table 11.2 The use of the similarity grid for developing a treatment programme in different clinical presentations

Conditions: A. Foot
drop

B. Tennis player
(medial knee pain)

C. Patient with
chronic neck pain

D.Stroke
patient
(left side)

Name the tasks: Weight-
bearing

Playing tennis Daily activities
requiring neck
movement

All
activities

1. Body

area

Arm X

Trunk X (neck) X

Leg X X X

2. Ability Parametric Force X X

Velocity X X X

Length X X X

Endurance X X

Synergistic Co-contraction

(stability/

steadiness)

X X

Reciprocal

activation

(movement)

X X X

Composite Coordination X X

Balance/

postural

stability

X X

Transition rate X

Relaxation X X

3. Skill General List activities: X X X

Special List activities: X X X X
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Context and specific injury
rehabilitation (the amazing clinical
shortcut)

Is motor rehabilitation of the spine different for a disc
injury, degenerative changes of the facet joints or non-
specific back pain? Is there a difference in neuromus-
cular rehabilitation of a patient with medial or lateral
meniscus or cruciate ligament damage? Do we need
intricate knowledgeof all themotor changes associated
with each condition in order to treat them effectively?

The answer is, probably not;which is very fortunate
for all of us. This is largely due to the similarity princi-
ple. Ultimately, the body area in focus has to be re-
habilitated similarly and in context to what it does
functionally, regardless of the tissues involved (see
similarity principle Ch. 5). Hence, neuromuscular
126
rehabilitation of the backwill be carried out in patterns
that are similar to functional trunk movement during
bending, lifting, pushing and standing, etc., regardless
of which tissue is damaged. Knee rehabilitation
will be in movement patterns that resemble knee
movement during weight-bearing activities, again,
regardless of the anatomical location of the injury.

The similarity principle provides us with a useful
clinical short-cut: a context principle (Fig. 11.4). At
the basic level of context, a joint does what a joint
does. A hip, knee, ankle and foot all have their dis-
tinct physiological patterns of paired movements,
such as flexion-extension, rotation etc. (motion
level). At the next level of context all the leg joints
move in patterns that reflect what the whole leg
does (context level), within the next context level
of what the person does with their legs, within their
environment, e.g. stand, run, squat, climb stairs, etc.
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physiological
range/motion

Knee
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range/motion

Ankle
physiological
range/motion

Foot
physiological
range/motion

Motion level

In context of what a person does with their leg

Within their environment

In context of what a leg does

Context level

Fig. 11.4 � The context principle applied to the
lower limb. The inner circle represents the
physiological range of a joint. Beyond that all
other functions are within context (context level).
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This means that at the lower level of context,
which focuses on specific joints, the rehabilitation
would be unique to each particular joint to account
for their characteristic function. Hence, rehabilita-
tion that commences on the treatment table will
be markedly different from knee to the hip. How-
ever, once we move up one level, within the context
of the whole leg, within the context of what a per-
son does with it, the rehabilitation is no longer spe-
cific to a single joint. The leg will be rehabilitated as
a whole in some functional pattern. It means that at
this level hip, knee and ankle injuries are rehabili-
tated in much the same way, i.e. within weight-
bearing activities (see part 2 video).

Rehabilitation and movement
capacity

Ideally, a patient should be treated or trained at a
level that matches or is somewhat above, their cur-
rent movement capacity. If the patient can stand,
rehabilitation of the leg should be in standing. Simi-
larly, a patient who is suffering from lower back pain
should be rehabilitated in upright tasks if they able to
stand and move in upright posture. In these two clin-
ical examples, there is no therapeutic/motor control
value in challenging movement at a level below
the patient’s capacity. Exercising on the floor or
treatment table would be below this capacity
(which, unfortunately, is a very common approach
for trunk rehabilitation in several physical therapies).

Is there a place for this capacity downgrading
approach? It is reasoned that it is easier to train
movement in a recumbent position and then trans-
fer this experience to more complex upright tasks.
Furthermore, it may help to reassure the patient
that movement is safe. From motor learning and
transfer perspective this is unlikely to be an effec-
tive training method (see similarity and context
above). There may be some merit in a capacity-
regressive rehabilitation as a way to reassure the
patient that movement is OK. However, it can
also convey the opposite message that movement
is unsafe, especially if the patient is already able
to perform some of their daily activities in upright
postures.
Beyond the session: creating
a challenging environment
for repair and adaptation

Motor recovery is an adaptive and reparative process.
It is dependent on the exposure of the individuals to
the physical and cognitive-motor challenges that will
drive this process.
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Fig. 11.5 � Co-creating a repair and adaptation environment to maintain the movement challenges
throughout the day.

Neuromuscular Rehabilitation in Manual and Physical Therapies
This can be achieved by co-creating with the
patient an environment that challenges and competes
with their current state. The re-created environment
should extend to their daily activities. This can be
achieved by using functional movement from the
patient’s daily routine or providing specific exercises
that will challenge motor losses throughout the day
(Fig. 11.5). This approach was exemplified in the
management of the patient with the foot drop
described above.

Rehabilitation that is limited to the clinic will
occupy a small fraction of time within the patient’s
life and will, therefore, be less effective. The lack
of challenges outside the session time will compete
with the adaptation environment created during
the session. The winner of this competition in
adaptation will be the one the patient is most
exposed to.

Summary points

• Recovery of motor control is an intrinsic person/
nervous-system process.

• This recovery is dependent on psychological,
behavioural, neurophysiological and tissue-related
factors. Often many of these factors are
interrelated.

• The role of neuromuscular rehabilitation is to
optimize the recovery of movement control,
working with all these factors.
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• There are thee main principles to consider in
neuromuscular rehabilitation: functional
movement, skill- and ability-level rehabilitation,
and the code for neuromuscular adaptation.

• A functional approach promotes the use of what
the patient already knows. Challenges to specific
motor losses can be found within the person’s
movement repertoire.

• At skill-level rehabilitation the patient simply
aims to do the movements they can’t do.

• Cognition about injury and pain, persistent
pain and fear of it, and behavioural factors can
all be managed within skill-level rehabilitation.

• Ability-level rehabilitation (re-abilitation)
focuses on specific underlying motor losses
that prevent the person from attaining their
movement goals.

• The challenges to the motor abilities should be
similar and within the context of functional
activities.

• The challenges should be introduced at a level
that matches, or is above, the patient’s
movement capacity.

• In the neurological dimension there is no injury-
specific rehabilitation. An area is rehabilitated
according to its function rather than to its
underlying pathology.

• Rehabilitation is functional and like real-life
movement. There is no need for fancy
complicated stuff.
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Motor abilities, assessment to
challenge: re-abilitation
Within the motor complexity model the different
motor abilities can be assessed, losses identified and
recovered through specific movement challenges. The
clinical process that focuses on these underlying control
factors has been termed “re-abilitation”.

Before describing the various assessments and
challenges for the different abilities there are sev-
eral clinical considerations related to re-abilitation:

• Assessment is a process of information gathering
about the movement control of the individual. The
aim of the assessment is to provide a better
understanding of the patient’s movement control
rather than a diagnosis.

• Specific abilities can vary greatly between
individuals or opposite sides of the body, even
in normal healthy individuals. False positives
are frequent and will contribute to clinical
uncertainty. Several abilities should be assessed
rather than relying on the outcome of a single
assessments.

• Each motor ability can be assessed in several ways
– there is no one single assessment procedure.

• In complex neuromuscular conditions, such as
stroke, it may be difficult to assess all losses in
one go. In these cases information is often
gathered during several treatment sessions.

• Subjective responses from the patient are also
important. During testing the therapist may not be
aware of fine control failure. Yet the patient may
report a subjective feeling of fatigue, weakness, an
inability to control the movement or an inability to
fully perceive the position of the limb.

• The assessments often become the challenge
itself. This allows a smooth transition from
assessment to challenge without presenting the
patient with an endless battery of tests.

• Often the challenge is characterized by
introducing variations in the intensity, duration
and repetition of particular movement patterns
that enhance specific abilities.

The assessments and challenges of abilities
described below are provided as examples (see
summary, Table 12.1). Photographs of these chal-
lenges can be found on pages 142–161. The section
containing the photographs is divided into challenges
to control of the lower limb, upper limb and the
trunk. A demonstration of these challenges (and
much more) can be found in the accompanying DVD.

There is no strict protocol governing the assessment
and challenge of abilities. Every patient and their con-
dition is different. Furthermore, most conditions tend
to vary and change over time. Be creative and invent
assessments and challenges that suit the present clini-
cal situation. There is noway to remember every single
assessment – there are too many possibilities!

Parametric abilities:
assessment and challenge

The four parametric abilities were identified as
force, length, velocity and endurance abilities.

Force control

There are several factors that have to be considered
when assessing and challenging force ability:

• Ability to fully relax

• Ability to produce maximal force



Table 12.1 Examples of assessments and challenges for the different motor abilities

Motor ability Parametric abilities Re-abilitation

Description Assessment

Force

Force relaxation

Max force

Force grading

(dynamic or static)

The ability to provide adequate force

for optimal execution of movement.

Force relaxation: Instruct patient to let go, assess the

resistance to passive movement.

Maximal force: Static force – patient holds a static position

and resists therapist-imposed movement. Work within

movement pairs (e.g. flexion–extension).

Dynamic force – patient performs a cyclical task against

resistance.

Force grading: Patient gradually increases/decreases force

against resistance.

Force relaxation: Patient has to make the limb heavy,

instructed to perform movement with as little effort

possible. Use contract–relax method.

Maximal force: As assessment. Add different joint

angles/limb position.

Force grading: As assessment. Randomize the forces.

Length (also range

or angle)

Max length

Max shortening

Length grading

The ability to effectively regulate the

range of movement.

Max shortening and full length: Compare passive active

ranges of movement or active ranges of non-affected/

affected sides.

Length grading: Patient is instructed to slowly move the

limb between two ranges. Look out for how smooth the

movement is

As assessment.

Change variables such as limb position, force (either

dynamic or static) and velocity.

Velocity

Max velocity

Velocity grading

The ability to regulate the rate of

movement.

Max velocity: Patient moves limb/trunk as fast as possible

from one spatial position to another.

Velocity grading: Movement at progressively increasing rate

or alternating between fast and slow movement (tracking

assessment).

As assessment.

Change variables such as limb position by therapist

moving hands apart to new positions.

Neuromuscular

endurance

The ability to maintain a physical

activity until it can no longer be

continued.

How long a patient can perform a given task before fatigue

sets in (dynamic endurance).

How long a patient can maintain a particular position (static

endurance).

If in limbs, compare both sides.

As assessment.

Synergistic abilities

Co-contraction

Dynamic and

static

The ability to control the active

stability of joints.

Static co-contraction: Patient attempts to maintain a

particular position against external perturbations.

Dynamic co-contraction: Patient tries to maintain cyclical

movement against sudden perpendicular perturbation by

the therapist.

As assessment, but start low force and speed

perturbations and gradually increase, as the patient is

improving.

Vary the joint position/plane of movement.
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Reciprocal

activation

The ability to control local movement

at a joint.

Pendular movement of the limbs or trunk.

Observe cyclical tasks.

As assessment.

For cyclical tasks add parametric motor abilities: force,

length, velocity and endurance.

For challenging timing, instruct patient to perform low-

velocity rhythmic cyclical movement. As their control

improves increase the movement velocity.

Composite abilities

Coordination The harmonious and synchronous

control of two or more joints or body

masses.

Instruct the patient to perform different tasks, observe the

ability to control the movement within the same limb and in

relation to other limbs.

Encourage functional movement within single or

multiple limbs. Vary limb positions, angles, force and

velocity.

Balance and

postural stability

The ability to maintain upright

movement or stance efficiently and

with minimal physical stress.

Dynamic balance: Observe tasks such as walking, walk and

turn, hopping on single leg, etc.

Static balance: Standing on both legs, narrow the standing

base and finally single leg.

More of the assessment.

Transition time The duration needed to re-organize

movement between two dissimilar

tasks and to carry out the subsequent

task skillfully.

Vertical transition: Assess transition within the same ability

by rapidly alternating between two extremes, e.g. fast-

slow or forceful-gentle.

Lateral transition: Take two abilities such as reciprocal

activation and co-contraction and instruct the patient to

change rapidly between them.

Same as assessment.

Once specific contraction or composite abilities

improve, introduce the transition rate by mixing the

contraction abilities, e.g. moving at low force and fast,

to suddenly shifting to a strong force and slow

movement.

Motor relaxation The ability to reduce neuromuscular

activity to an optimal level necessary

for maintaining a motor task or to

become inactive.

Difficult to estimate during active movement.

Sometimes postural indications, such as tensing the

shoulders.

Assess resistance to passive movement.

Also palpate muscles during rest or during tasks (may not be

very reliable assessment, consider adding contract–relax

during the palpation).

Guide patient on how to relax while on the treatment

table or during specific task, e.g. slowly turn your head

while trying to make the neck soft.
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• Ability to grade the movement force.

Assessing force control

Relaxation ability can be assessed by instructing the
patient to let go and make the limb heavy. At this
point the therapist moves the patient’s limb passively
while assessing the level of background resistance.

Resistance to passive movement of the neck and
trunk/spine can be assessed more effectively when
the patient is lying down. It assesses the resistance
to movement between body masses rather than being
a test for segmental or individual joint range of
motion. For example, neck relaxation can be assessed
by moving the head mass in counter-rotation to the
thoracic mass.

Assessing muscle tension by palpation alone,
although possible, can be misleading. This is partly
because of the inaccuracy of palpation itself as a
diagnostic tool,1 but also due to the fact that passive
resting muscle tone can be high, although the mus-
cle is motorically silent.2 One way to overcome this
difficulty is to use contract–relax during palpation.
The therapist can then compare the tightness (tone)
in the muscle between the active and relaxed states.

Maximal force production can be assessed either
in movement or in statically held positions. The test
for control generally aims to encompass the move-
ment pairs. For example, static force can be tested
by instructing the patient to hold the limb in a par-
ticular position, say elbow flexed at 90 degrees.
While in this position the force is challenged both
in flexion and extension. Dynamic force can be
assessed by instructing the patient to produce a
repetitive reaching movement while providing resis-
tance through the whole cycle of movement (chal-
lenging force within the synergistic pairs).

To test force grading control, simply ask the
patient to perform the same movements but at dif-
ferent force levels, e.g. “try moving with the least
amount of effort, try maximal effort and now try a
force level in-between”. Loss in control of force grad-
ing is more obvious in patients who had CNS trauma,
but more difficult to assess in individuals with mus-
culoskeletal injuries (who have an intact CNS).
Challenging force control

The challenge to force control is no different from
the assessment; just do more of the same.

For motor relaxation, i.e. no force, the patient
can be given instructions such as “make your limb
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heavy” or “imagine your muscles melting”, etc. This
approach is discussed in greater detail in Chapter 9
which examines non-traumatic pain conditions.

Maximal force can be challenged during move-
ment or in held positions, as described in the test
above. The movement patterns should be within nor-
mal functional arm movement, i.e. hand to mouth,
tennis serve patterns, etc., continuously varying the
angles and the forces applied. The patient is
instructed to perform a movement such as reaching
and retrieving, during which the therapist applies
varying degrees of resistance (see Fig. 12.45).

The challenge of force can alternate between
dynamic and static force. As the patient is moving
their arm (dynamic) at different angles, instruct them
to stop and hold that position (static). At that point
the therapist applies force perturbation to the arm
within the movement pairs (e.g. flexion-extension)
or random challenges.

As discussed above, force grading challenge is more
often used for patients with CNS damage. For exam-
ple, to challenge force grading in the affected hand,
the patient is instructed to hold and squeeze the
therapist’s hand. They are instructed to squeeze
“hard”, “soft” and in the “middle”. They can also be
instructed to gradually increase and decrease the force
between these two extremes. As they improve, the
instructions can become more random; “squeeze
hard, medium, hard, soft, hard” and so on.
A note on force ability

Recent studies have demonstrated that functional
weight-bearing exercises are as effective in improving
force ability in the leg as specific knee-strengthening
exercise.3–5 However, the functional group benefited
a bit more – there are added improvements in
balance ability (146% improvement compared to
only 34% in the strength group), and a tendency
to equalize muscle strength imbalances between
the dominant and non-dominant legs. Apart from
these obvious advantages such functional challenges
can be developed in clinic and as exercise without
the need for any equipment (in my clinic I have only
a treatment table and patients are given only
functional exercise).

Another note on force, it has generally been
assumed that fatigue and metabolite accumulation
is a prerequisite for strength gains, i.e. pain ¼ gain.
However, a recent study has demonstrated subjects
who weight-train with sufficient rest periods
between sets have the same strength gains as
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subjects who train with fatigue.3 This suggests that
patients do not have to be put through a gruelling
painful treatment to achieve force improvement
(in particular if they are recovering from a painful
condition).
Length control

There are several factors that have to be considered
when assessing and challenging force ability:

• Full active range control

• Full active shortening control

• Grading of length.

Assessing length control

The full active range can be assessed by comparing it
to the opposite side or to the passive range. Both
length and shortening control should be examined
when comparing the active-passive ranges of move-
ment. Failure to actively reproduce the passive
ranges may imply changes in length-shortening con-
trol of synergistic muscles. (Note: there is often a
normal discrepancy between active and passive
ranges, passive being greater than active range.
Hence, in this assessment look out for gross
differences).

Grading of length is usually a finer level of motor
control. Hence, the loss of this control is more evi-
dent in individuals who have suffered CNS damage.
For example, a stroke patient when instructed to
gradually move the knee from flexion to extension
may flick the knee into full extension, being unable
to control the mid-ranges.
Challenging length control and functional
stretching

An effective way to work on length control is to
take the limb, trunk or neck passively to the end
range. The patient is than encouraged to perform
functional movements at the end range – functional
stretching (see miscellaneous on DVD). For exam-
ple, in the shoulder, fully flex the patient’s shoulder
passively (see Fig. 12.47). Once the full range is
achieved, instruct the patient to perform any func-
tional movement, such as waving or pulling and
pushing a sash window. The advantage in this
approach is that both sides of the movement pairs
are being retrained simultaneously – the shortening
control of shoulder flexors and lengthening control
of shoulder extensors (see also stretching versus
length control, Ch. 3).

Velocity/speed control

The most common issues in velocity control are:

• Max velocity

• Ability to grade acceleration/deceleration.

Assessing velocity/speed control

An example of an assessment for this ability is to
instruct the patient to move, as fast as possible,
the affected limb between two positions marked
by the therapist’s hands (see Fig. 12.46). Another
speed assessment is to observe the time a patient
may need to complete a simple task such as getting
up from sitting, walking a certain distance or the
number of repetitions that can be achieved within
a given time.

Somewhat different from speed of movement is
the ability to grade the speed of movement. One
way to test this ability is to instruct the patient to
hold their arm, touching the therapist’s hand. The
therapist moves their hand in space at varying
speeds while the patient attempts to track the
therapist’s hand movements.

Challenging velocity/speed control

Re-abilitation of velocity control is the same as the
assessment. The patient is instructed to move
their limb between the two spatial positions
marked by the therapist’s outstretched hands. Fur-
ther challenge can be introduced by the therapist
holding their apart in various positions - wider
apart or in different planes of movement (see
Fig. 12.46).

Endurance (neuromuscular)

Assessing endurance

Generally, endurance can be assessed by instructing
the patients to perform repetitively specific tasks
and looking for signs of fatigue (a gradual increase
in pain and failure in voluntary activation).

The assessment of endurance can be by observing
the patient perform repetitions of functional tasks
such as walking, getting up from sitting, etc. It can
also assess local fatigue in a limb. This type of assess-
ment can be performed either in dynamic or static
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states of the limb. For example, endurance during
dynamic conditions can be assessed by instructing
the patient to move their limb repetitively between
two positions and note how rapidly they fatigue.6

Static endurance can be assessed by instructing
the patient to maintain a particular limb position,
during which time the therapist applies force per-
turbations repetitively, in one or several directions.

Challenging endurance

Treatment is the same as the assessment. The chal-
lenge of endurance can be alternated between
dynamic and static endurance.
Fig. 12.1
integrated
working i
Avoid mo
targeting
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Clinical note
Often training involves repetition to the point of
fatigue; this is believed to be a signal for muscle
adaptation or even motor learning. Although
repetition is an important element for neuromuscular
adaptation, fatigue is not.3 If the patient fatigues too
rapidly, they may be unable to carry out sufficient
number of repetitions. This is important in situations
where the re-abilitation is focused on abilities other
than endurance or force, such as coordination,
velocity and control of timing and duration of
synergists.
Sometimes fatigue is the first or most obvious
symptom of an underlying motor problem. For
example, I am currently working with a patient
who experiences disabling fatigue of the shoulder
Side-b
abd

rot

� Parametric abilities should be
into the synergistic level,

n paired movement patterns.
vements in a single direction and
single muscle groups.
during swimming. He seems to have no other motor
losses to the shoulder. Focusing on endurance abil-
ity has resulted in tripling his swimming distance.

Integrating parametric and
synergistic abilities

The assessments and challenges of motor abilities
are for movement control rather than for the assess-
ment of individual muscles. As was discussed previ-
ously, muscles don’t work alone but in complex
synergisms (Ch. 3). It would be expected that mus-
cle injury will result in control changes to the dam-
aged muscle as well as all its synergists. For
example, a biceps muscle injury is likely to influ-
ence the parametric control to biceps as well as all
its synergists in the shoulder and elbow. Hence,
the parametric abilities should be seen and
challenged within the context of synergism and
movement pairs (e.g. flexion/extension, Fig. 12.1).

Synergistic control

In the section above, some ideas were put forward for
assessing and challenging the parametric abilitieswithin
their movement pairs/synergies. Unique to this level of
motor control are the timing and duration of activation
between muscle groups (or movement pairs).

Another consideration is the ability to utilize the
correct pattern of synergism for particular move-
ment requirements.
Synergism
Co-contraction/

reciprocal activation

Flexion

Extension

ending/
uction/
ation

Side-bending/
adduction/

rotation

Force           
Velocity           Length           Endurance
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Synergistic abilities

Co-contraction assessment

Within co-contraction there are two patterns that
can be assessed:

• Static co-contraction

• Dynamic co-contraction.

To assess static co-contraction, the patient holds
the limb in the position to which the challenge is to
be introduced. The therapist applies perturbations
attempting to move the limb/trunk away from that
position. These are low force and amplitude pertur-
bations, applied rapidly with sudden changes in the
direction of movement, usually within the move-
ment pairs, e.g. flexion–extension (see Fig. 12.46).
The different movement pairs can be challenged
individually, in sequence or randomly.

When co-contraction is affected the patient will
be unable to “stiffen” the joint to provide adequate
resistance to the imposed movements. There is a
perceivable delay before the patient is able to
“kick-in” with a muscle contraction to resist the
perturbation; particularly during the sudden change
in direction. Another common observation is that
patients with synergistic control losses may attempt
to increase the force of co-contraction to overcome
losses in timing.

This assessment should commence at a low
perturbations rate and force, gradually increasing
it as the patient becomes familiar with the
movement.

This test can be repeated in different joint angles
and ideally in positions where failure may be sus-
pected. For example, instability may be more evi-
dent in plantar- rather than dorsi-flexion, a
position where the foot is more likely to “twist”
during weight-bearing activities.

To assess dynamic co-contraction, the patient
can be instructed to move their limb in one plane,
say, a sawing movement with their arm. As the
patient is performing the task, the therapist intro-
duces sudden unexpected perturbations perpen-
dicular to the direction of movement (see
Fig. 12.46). If the patient has good control over
this ability they should be able to successfully
maintain the movement in one plane.
Challenging co-contraction

Static co-contraction challenge is an extension of
the assessment described above. The assessment
then becomes the challenge by introducing the rep-
etition element and varying the movement para-
meters (force, velocity length/angle).

Dynamic co-contraction re-abilitation can have
two forms. One form is as described in the test
above, where the patient tries to maintain move-
ment in one plane against sudden perturbations.
Another form utlizes the phenomenon that
dynamic co-contraction is more evident during fine
or fast movements (Ch. 3). Hence dynamic co-
contraction can be challenged by introducing fast
limb or trunk movements within a narrow range.
The range can be determined by the therapist’s
hands. The patient is instructed to swing their limb
or their trunk between these markers as fast as
possible (same procedure as for reciprocal activa-
tion but faster, see Figs 12.46 & 12.61).
Clinical note
There are several conditions where dysfunctional
co-contraction patterns are present (reflected in
timing and duration changes).7–14 This is often seen
in psychomotor problems such as muscle tensing
associated with stress or in patients with CNS
damage (Chs 9 & 10). In these conditions the aim is
to normalize co-contraction and allow more effective
reciprocal activation. This can be achieved by
guiding the patient on how to relax antagonistic
muscle groups during movement. (It has been
demonstrated that in some patterns of movement,
co-activation virtually disappears when subjects are
instructed to relax at the initiation of movement).15

The re-abilitation goal is that movement which is
dominated by co-activation will shift towards
reciprocal activation with practice (see more in
Ch. 3).16
Reciprocal activation assessment

The timing of reciprocal activation is very difficult
to assess in clinic. The assessment is more observa-
tional, examining the “smoothness” or quality of
movement. One method of examination is to
instruct the patient to perform rhythmic pendular
movement of the limbs or trunk (see Figs 12.19,
12.46 & 12.61). Pendular movements are predomi-
nantly reciprocal activation recruitments that
involve rapid, out-of-phase, contraction and relaxa-
tion of the movement pairs. They are, therefore,
useful to assess as well as challenge reciprocal acti-
vation ability.
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Challenging reciprocal activation

Any cyclical and rhythmic movement will promote
reciprocal activation of the synergists. Often the
inability of the patient to produce smooth reciprocal
movement is due to an uncontrollable and overriding
co-contraction. Sometimes this can be reduced by
simply instructing the patient to relax during the
movement of the limb. Control of reciprocal activa-
tion may also be influenced by the velocity of move-
ment. The challenge can start with slow reciprocal
movements, during which the patient is instructed
to make it “as smooth as possible”, increasing the
movement velocity as they improve.
Composite abilities

In Chapter 3 the composite abilities were identified
as:

• Coordination

• Balance/postural stability

• Transition time

• Relaxation.

Coordination

There is no single way to assess coordination. Many
of the tests are worked out on the spot depending
on the area of the body affected. There are several
coordination levels: fine control, single-, multi-limb
and body coordination.

Coordination assessment

A simple way to assess coordination is to observe
the quality of movement during particular tasks.
Failure in coordination often manifests as the loss
of smooth synchronized movement and an inability
to accurately reach a target. Sometime losses in
coordination are overcome by the patient reducing
their movement velocity. The challenge to coordina-
tion can be made progressively more demanding by
increasing the rate or the complexity of movement.

Upper limb (as an example)

Fine control in the hand can be assessed by instruct-
ing the patient to approximate the thumb and the
fingers in different sequences, manipulate an object
such as a pen between the fingers, or to simply
write numbers or join dots on paper.
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Single-limb coordination can be assessed by
instructing the patient to alternately touch with their
index finger two reference points, such as their other
hand and the therapist’s hand. To increase the chal-
lenge, this assessment can be performed at a progres-
sively faster rate or by continuously changing the
reference points. This is done by the therapist’s
moving their hand to different spatial positions.
Another simple test is for the patient to touch and
follow the therapist’s hand as it is moving in space
(see Figs 12.20 leg and 12.54 trunk; for arm see
DVD).

Multi-limb coordination tests essentially examine
the patient’s ability to use the arms simultaneously
and synchronously during specific tasks. It can start
as a simple test to see if the patient can swing their
arms as if walking, passing an object between the
hands to more demanding tests such as tracking with
both arms the movements of the therapist’s hands.

Whole body coordination can be assessed by
observing the patient performing whole body daily
tasks such as walking into the room, getting up from
sitting, dressing, etc.
Challenging coordination

Re-abilitation of coordination at all levels is the
same as the assessments described above.
Balance and postural instability

Balance assessment

Balance should be tested both while standing
(static) and during movement (dynamic).

Static balance can be assessed by progressively
narrowing the standing base in order to increase the
demand on balance control; starting with feet apart,
side-by-side, one foot directly in front of the other
and eventually standing on one leg. Further balance
challenges can be achieved by balancing on the ball
of the feet, closing the eyes or drawing an imaginary
number with the non-weight-bearing leg (see Figs
12.36–12.39). In this assessment, look out for the
time spent on one leg, and how demanding the bal-
ance for the weight-bearing foot is. Fine-balance def-
icit may only become apparent as the base becomes
smaller and vision is reduced.17

Dynamic balance assessment can take several
forms. The most immediate is to observe the
patient perform activities such as walking across
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the room, walking around the table, climbing stairs,
etc. There are several indicators when dynamic bal-
ance is affected such as use of broader walking base,
the time spent on the affected side (shorter dura-
tion), a shuffled walk (not raising the feet to clear
the ground), taking small steps and unusual body
sway (some of these findings may also represent
other motor control losses).

The single leg balance described above also can
be turned into a dynamic assessment by instructing
the patient to hop on one leg. Forward-backward,
side-to-side and diagonal skipping can be added to
further challenge dynamic control.

Most of the tests described above for balance are
initiated and performed by the patient. As such this
challenge is expected and the patient has sufficient
time to organize for it (in anticipated tasks there is
motor organization before the movement com-
mences, a “feed-forward” phenomenon). However,
in real life situations there are unexpected events that
challenge balance, such as tripping or being jostled by
others. Often, patients with balance deficits may find
it difficult to meet such challenges since there is no
anticipatory postural adjustment. The patient has,
therefore, to rely on their transition time (which is
a mixture of reaction and movement time).

Unexpected challenges that resemble real life
situations can be introduced during the balance tasks.
The therapist can stand behind the patient and intro-
duce small amplitude perturbations (pushes) in dif-
ferent directions. These challenges can be introduced
during static balance or during walking; in particular
during the stance phase of the gait cycle of the
affected limb (see Fig. 12.38).

Patients who have central balance losses can also be
assessed in unsupported sitting.18When gently jostled
there may be a small but observable delay before they
are able to correct their sitting position. I have occa-
sionally observed this in elderly patients suffering
with mild CNS degeneration. This sometimes can
help to differentiate problems of motor loss affecting
the legs from those that are centrally mediated.

Challenging balance/postural instability

Challenging balance is an extension of the assessments.

Transition time

Transition time is the ability to rapidly and
smoothly organize movement from one particular
action to another. This can be within a single ability
(vertical transition time), such as alternating
between fast and slow movements or between any
two abilities or tasks (lateral transition time). This
can be assessed by introducing sudden, unexpected
changes to the movement.
Transition time assessment

A vertical assessment of transition can be the obser-
vation of the patient’s capacity to perform two
extremes of a single ability. For example in force
control, to quickly alternate between full relaxation
and maximal contraction, in speed control the
capacity to alternatively produce slow and fast
movements, such as in the arm tracking challenge.

Transition time can be also assessed by introdu-
cing sudden changes in the direction and range.
For example, in the test where the patient has to
move their arm between two spatial positions (see
above speed ability), the therapist can introduce
sudden changes in the distance between, or the
position of, the two hands.

Transition time assessment in balance ability could
be to alternate between dynamic and static balance,
for example quickly walk then suddenly stopping
and balancing on a single leg.

Transition time can be assessed by instructing the
patient to perform two different tasks, such as
observing the time it take sitting to standing, etc.
(it also requires other abilities such as speed of
movement). It can also be assessed by instructing
the patient to alternate between two abilities, such
as reciprocal activation and co-contraction. For
example, the patient could start by tracking with
their arm the therapist’s hand. At particular posi-
tions the therapist suddenly stops and the patient
has to maintain that position while the therapist
applies the co-contraction challenge described
above. Failure often manifests as a delay in organiz-
ing the stiffness (co-contraction) needed to over-
come the perturbations.

Occasionally it may be possible to estimate reac-
tion time. For example the patient, while sitting on
the treatment table, is instructed to maintain their
knee flexed at 90 degrees. The therapist applies a
force to flex the knee against the patient’s resis-
tance. The therapist suddenly removes their hand
but the patient has to maintain the knee position
(at 90 degrees, without overshooting into exten-
sion). The extent to which the patient can maintain
the original flexed position provides a rough esti-
mate of the reaction time.
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A variation of the reaction time element is to
instruct the patient to simultaneously tap both their
hands on the therapist’s hands. The therapist sur-
prises the patient by continuously changing the posi-
tion of the hands, which the patient is trying to
follow. How well the patient is able to follow the
sudden change of position can provide some assess-
ment of their reaction time.

Challenging transition time

The challenges are an extension of the assessment
described above.

Vertical and lateral transitions are often mixed
during the re-abilitation. This can be exemplified in
treating the hand of a CNS-damage patient. At first,
work with each contraction ability separately (vertical
transition); moving the thumb at different speeds,
and forces. Once these specific abilities improve,
introduce the lateral transition rate bymixing the con-
traction abilities, e.g. instructing the patient to move
the thumb slowly and fast, to suddenly shifting to a
strong force and slow movement, etc.

Motor relaxation

Psychomotor relaxation assessment
and challenge

This ability can be difficult to fully assess. Often
the diagnosis is made from the case history,
138
particularly in pain conditions where there is no
history of physical trauma. Otherwise the assess-
ment and challenge of this ability is similar to
those described for force relaxation ability
described above. Motor relaxation training was dis-
cussed in Chapter 9. For discussion on differences
between force relaxation and motor relaxation see
Chapter 3.

Summary points

• Re-abilitation is the process of assessing and
challenging specific motor abilities.

• The aim of the assessment is to provide a better
understanding of the patient’s motor abilities. It
is a process of information gathering.

• Specific abilities can vary greatly between
individuals or opposite sides of the body, even in
normal healthy individuals.

• Abilities can be assessed in many different ways.

• Many of the assessments often become the
challenge itself.

• The challenge is often characterized by
introducing variations in the intensity extent
(length), duration and repetition of particular
movement patterns.

• There is no strict protocol for re-abilitation. Be
creative and invent assessments and challenges
that suit the situation.
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Demonstration of challenges
Index of Figures 12.2–12.64

Abilities Leg/hip Arm/shoulder Trunk/spine

Co-contraction Force Figs 12.2–12.11 (non-context,

pp. 142–144)

Figs 12.21–12.25 (in context,

pp. 149–150)

Figs 12.40–12.44

(pp. 157–158)

Figs 12.48–12.51 (non-context,

pp. 160)

Figs 12.55–12.60 (in context,

pp. 163–164)

Velocity

Length/

range

Reciprocal

activation

Force Figs 12.12–12.19 (non-context,

pp. 145–148)

Figs 12.26–12.34 (in context,

pp. 151–153)

Figs 12.45–12.47

(pp. 159)

Figs 12.52–12.53 (non-context,

pp. 161)

Figs 12.61–12.64 (in context,

pp. 165–166)

Velocity

Length/

range

Coordination Figs 12.19–12.20 (non-context,

pp. 148)

Fig. 12.35 (in context,

pp. 154)

Fig. 12.46

See DVD

Fig. 12.54 (non-context,

pp. 162)

Figs 12.61–12.64 (in context,

pp. 165–166)

See DVD

Transition time See DVD See DVD Fig. 12.54 (non-context,

pp. 162)

See DVD

Balance/postural stability Figs 12.36–12.39 (pp. 155–156) All procedures in context Figs

12.55–12.64

Also Figs 12.36–12.39
Note Some procedures are difficult to demonstrate in still photography, and are therefore only demon-
strated on the DVD. Each procedure challenges several underlying abilities, for example, the hip proce-
dures in standing can be used to challenge trunk balance and coordination. All the challenges should be
graded, with an incremental increase in the four movement parameters (force, velocity, length/range and
endurance).
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Key for figure symbols

Patient resists and maintains the joint/limb/trunk in the same position.

Patient moves their limb between two positions.

Patient moves their limb in one direction.

Direction of forces applied by the practitioner.

Direction of forces applied by the practitioner.

Practitioner resists patient’s movement.

C H A P T E R 1 2Motor abilities, assessment to challenge: re-abilitation
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Demonstration of challenges: the lower limb
Fig. 12.2 � Co-contraction challenge in rotational plane.
Patient stiffens leg and hip and resists internal–external
rotation forces imposed by the practitioner.

Fig. 12.3 � Co-contraction challenge in lateral plane
(adduction-abduction). Patient stiffens leg and hip and resists
lateral-medial forces imposed by the practitioner.

Fig. 12.4 � Co-contraction challenge in the lateral plane.
Side lying position, the patient stiffens leg and hip and resists
lateral-medial forces imposed by the practitioner.

Fig. 12.5 � A variation of co-contraction challenge in lateral
plane (adduction-abduction) with hip flexed and foot
supported. Patient stiffens leg and hip and resists lateral-
medial forces imposed by the practitioner.
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A B

Fig. 12.7 � Variation of hip co-contraction challenge in the
lateral plane. Patient stiffens leg and hip and resists rhythmic
meio-lateral forces imposed by the practitioner. A, In neutral
position. B, In abduction.

A B

Fig. 12.6 � A variation of co-contraction challenge in lateral
plane, adding the length (range) parametric ability. A, In
abduction. B, In further adduction.

Fig. 12.8 � Challenge of hip co-contraction in the AP plane
(flexion–extension). Patient stiffens the leg and hip and resists
rhythmic AP forces imposed by the practitioner.

Fig. 12.9 � Variation of hip co-contraction challenge in the
rotational plane. The patient stiffens the whole leg and hip and
resists the rhythmic rotational forces imposed by the practitioner.

A B

Fig. 12.10 � Varying the length element in rotational co-
contraction. Starting point in internal (A) and external (B)
rotation.
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Fig. 12.13 � Reciprocal challenge for the hip in the lateral
plane. The patient is instructed to oscillate the foot from side to
side while supported by the practitioner. Force challenge can
be introduced by practitioner increasing the resistance to the
lateral movement.

A B

Fig. 12.14 � A length challenge in the lateral plane can be
introduced by initiating the movement from different starting
positions (A, abduction and B, adduction). The patient is
instructed to oscillate the leg from side to side at the end range.

Fig. 12.11 � Co-contraction challenge of the hip andwhole leg.
The imposed cyclical perturbations can be in single planes (AP,
lateral and rotation) or mixed in a random pattern.

Fig. 12.12 � Reciprocal challenge for the hip in rotational
plane. Patient is instructed to oscillate the foot between two
positions marked by the practitioner’s hands.
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Fig. 12.15 � Reciprocal challenge for the hip in rotation and lateral movement planes. The patient is instructed to oscillate the
knee between the two positions marked by the practitioner’s hands.

A B C

Fig. 12.16 � Variation of reciprocal challenge for the hip. With the foot off the table control of the hip can be challenged in
different planes, by instructing the patient to oscillate the knee and the foot between the practitioner’s hands. A, lateral,
B, AP and C, rotational planes.

Fig. 12.17 � Reciprocal activation combining force challenge to the hip in the lateral plane. The patient is instructed to
cyclically adduct and abduct their leg while the practitioner provides varying levels of resistance.
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Fig. 12.18 � Reciprocal activation combining force challenge to the hip, in the AP plane. The patient is instructed to
rhythmically cycle with their leg against resistance.

Fig. 12.20 � A coordination challenge for the leg/hip. The patient is instructed to follow the practitioner’s hand movement in
space. This challenge can be graded by commencing with simple and slow arcs of movement to more complex and faster
movement patterns.

Fig. 12.19 � Reciprocal activation challenge for the leg and hip. Introducing continuous variations in planes of movement and
length control. The practitioner starts with simple repetitive patterns and graded, by increasing the velocity of movement,
position of, and the distance between the hands. This procedure also challenges single-limb coordination.
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Fig. 12.21 � Swinging the free leg in the AP plane
challenges AP co-contraction of the hip on the weight-
bearing side.

Fig. 12.22 � Swinging the free leg in the lateral plane
challenges lateral co-contraction of the hip on the weight-
bearing side.

Fig. 12.24 � Co-contraction combined with force challenge
to the weight-bearing leg. The patient is instructed to
stiffen the free leg and resist the forces applied by the
practitioner. The forces can be applied in the rotational
and AP plane. The force applied will transfer to the
weight-bearing leg.

Fig. 12.23 � Swinging the free leg in the rotational plane
challenges rotational co-contraction of the hip on the weight-
bearing side.
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Fig. 12.25 � Co-contraction challenge to the weight-bearing
hip and leg. The practitioner applies forces in the AP, lateral
and rotational planes either in sequence or randomly.

Fig. 12.27 � Reciprocal and length challenge for the hip in the
lateral plane (abduction-adduction). The patient is instructed to
step over the practitioner’s foot. The foot can be placed at
different distances to challenge the lateral range of movement.

Fig. 12.28 � A variation of reciprocal and length challenge for
the hip and leg in the AP plane (can be also performed in
the lateral plane). This is achieved by raising the
obstacle (foot) over which the patient has to step.

Fig. 12.26 � Reciprocal and length challenge for the hip. The
patient is instructed to step over the practitioner’s foot. The
foot can be placed at different distances to challenge the
AP range of movement.
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Fig. 12.29 � Reciprocal and force challenge of the hip and
leg in the AP plane. The patient steps over an obstacle
while the practitioner provides resistance through the foot.

Fig. 12.30 � Reciprocal and force challenge of the hip and
leg in the lateral plane. The patient steps over an obstacle
while the practitioner provides resistance through the foot.

A B C D

Fig. 12.31 � Reciprocal and force challenge for the hip and leg. The patient performs single leg up-down squats. By bending
in different directions the forces challenge can be increased on the antagonistic muscle groups. A & B, slight tilting backwards
or forwards increases the challenge in the AP plane. C & D, side tilting will increase the challenge in the lateral plane.
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Fig. 12.32 � Reciprocal activation challenge of hip and leg
(free leg). The patient moves their foot between the two
positions marked by the practitioner’s hands. The distance
between the hands can be varied to include length challenge.

Fig. 12.33 � Reciprocal activation challenge of hip and leg in
the antero-posterior plane (flexion–extension cycles). The
patient taps with their foot and knee the practitioner’s hands.
The distance between the hands can be varied to include
length challenge.

Fig. 12.34 � Reciprocal activation challenge of hip and leg in
the rotational plane (flexion–extension cycles). The patient
swings their knee between the two positions marked by the
practitioner’s hands.
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Fig. 12.35 � Multi-limb co-ordination
challenge for the legs. Patient walks over
obstacles placed randomly on the floor.
This canbeperformedwithone legwalking
within and the other outside the obstacle
course or walking with both legs passing
through the obstacle course.

A B

Fig. 12.36 � Balance/postural stability challenge. A, Balancing on the affected
side and drawing imaginary numbers from 0-10 with the unaffected side. B,
Further challenge to balance can be introduced by standing on the forefoot and
drawing the numbers.

Fig. 12.37 � Balance/postural stability challenge. While standing on one leg the patient moves one hand between two
positions marked by the practitioner’s hands. A transition time challenge can be added by sudden and rapid changes in the
distance between the hands and the planes of movement.
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Fig. 12.38 � Unexpected challenge to balance/postural stability can be introduced by multidirectional perturbations provided
by the practitioner.

Neuromuscular Rehabilitation in Manual and Physical Therapies
Fig. 12.39 � For more disabled patients balance can be challenged by the patient tapping the practitioner’s foot with their un-
affected foot. This challenge can be graded by increasing the number of taps the patient has to perform or moving the target
further away. This encourages the patient to spend a longer time balancing on the affected side. It can be used to build up the
patient’s confidence to weight-bear or balance on the affected leg.
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Demonstration of challenges: upper limb
Fig. 12.40 � Co-contraction challenge, shoulder and arm
control in the AP plane (flexion–extension of the shoulder).
The patient is instructed to stiffen their shoulder/arm and
resist the AP movement imposed by the practitioner.

Fig. 12.41 � Co-contraction challenge, shoulder and arm
control in the lateral plane (adduction-abduction of the shoulder).
The patient is instructed to stiffen their shoulder/arm and resist
the lateral plane movement imposed by the practitioner.

Fig. 12.42 � Co-contraction challenge, shoulder and arm
control in the rotational plane (internal–external rotation of the
shoulder). The patient is instructed to stiffen their shoulder/
arm and resist the imposed rotational forces imposed by the
practitioner.

Fig. 12.43 � Co-contraction challenge, shoulder and arm
control multidirectional.
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Fig. 12.44 � Dynamic co-contraction challenge. The patient moves the arm in one plane, here in the AP plane. The practitioner
introduces perturbations at 90� to that plane. In this challenge the perturbations are in the lateral plane. During the procedure,
the practitioner instructs the patient to perform cyclical movement in parallel to the practitioner’s outstretched arm.

A B C

Fig. 12.45 � Reciprocal activation and force challenge to the shoulder and arm in the lateral plane (A & B) and (C) AP planes.
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A B C

Fig. 12.46 � Reciprocal activation and length challenge, varying length (A & B) and movement plane (C).

Fig. 12.47 � Functional stretching. The joint is taken to the end-range passively. In this position the patient performs functional
movement against the practitioner’s resistance. In this example of the shoulder the patient is instructed to perform movements
such as waving a flag above head, drawing imaginary numbers from 0-10. The elbow should be locked in extension to ensure the
use of the shoulder in the movement.
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Demonstration of challenges: the trunk
Fig. 12.48 � Co-contraction challenge in rotation control of
the trunk. The patient maintains their leg and knee in the
position against rotational perturbations applied to the knees.

Fig. 12.49 � Co-contraction challenge of the trunk in the
lateral plane. Patient keeps the legs and trunk in line against
lateral perturbations applied at the feet.

Fig. 12.50 � Co-contraction challenge of the trunk in the
AP plane. The patient attempts to keep their trunk and legs in
line against AP forces applied at the ankle. This challenge can
be performed with the legs straight or with the knees slightly
bent which tends to reduce the leverage and forces on the
lower back.

Fig. 12.51 � Co-contraction and force challenge of the trunk
in the rotational plane. The patient interlocks their fingers and
keeps their elbows close to their side. They are instructed to
keep the knees and hands in line. The practitioner applies an
opposing force on the hands and the knees.
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Fig. 12.52 � Reciprocal activation challenge in rotation. Patient oscillates the knees between the two positions marked by the
practitioner’s hands.

Fig. 12.53 � Reciprocal activation and force challenge in rotational plane. Patient rolls both knees to the sides against the
practitioner’s resistance. This procedure can be also applied to in the lateral and AP planes, similar to the positions in
Figures 12.49 and 12.50.

C H A P T E R 1 2Motor abilities, assessment to challenge: re-abilitation
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Fig. 12.54 � Transition time challenge between reciprocal activation and co-contraction. The patient follows the
practitioner’s hands in different movement patterns. During the movement the practitioner suddenly stops the movement
and at that point the patient has to co-contract and resist imposed perturbations in different planes. Throughout this challenge
the patient should maintain their elbows locked in extension. This ensures that the trunk is recruited during the movement.

Fig. 12.55 � Co-contraction and force challenge to the trunk in rotation. The patient resists the turning force applied by the
practitioner.

Fig. 12.56 � Co-contraction and force challenge to the trunk
in the lateral plane. Same procedure as in Fig. 12.55.

Fig. 12.57 � Co-contraction and force challenge to the trunk
in the AP plane. Same procedure as Fig. 12.55. Note on this
procedure: This procedure can be used to challenge
reciprocal activation of the trunk in different movement
planes. In this challenge the patient initiates the movement in
rotation, lateral or AP planes against resistance provided by
the practitioner.

Neuromuscular Rehabilitation in Manual and Physical Therapies
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Fig. 12.58 � Co-contraction and force ability challenge in
multiple planes. The patient interlocks their fingers and
maintains the elbows at right angles and close to their sides.
They are instructed to maintain this position, during which the
practitioner applies perturbations in different planes. The
perturbations can be graded from challenges in one plane,
resisting circular movement imposed by the practitioner to
more complex and random perturbations in different planes.

Fig. 12.59 � Dynamic co-contraction control. Patient moves
their arms and trunk in the AP plane (flexion–extension),
during which the practitioner applies lateral perturbations.

Fig. 12.60 � Dynamic co-contraction in rotation.
Patient rotates the hand and trunk in the horizontal plane,
during which the practitioner applies perpendicular forces
in the AP plane.

C H A P T E R 1 2Motor abilities, assessment to challenge: re-abilitation
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Fig. 12.61 � Reciprocal activation, trunk in AP plane. The patient swings their arms between the two positions marked by the
practitioner’s hand. It is important that the patient keeps their elbows locked in extension. This will ensure that the trunk is
recruited to a greater extent in the movement. When working with patients who suffer from back pain the movement should be
in ranges that are pain free. The range can be increased as the patient’s condition improves. Often changes in the range can be
seen within a few cycles during the session.

Fig. 12.62 � Reciprocal activation, trunk in lateral plane. Same procedure as in Fig. 12.61. A transition time challenge
can be introduced in all this group of procedures by the introduction of sudden changes in the length or plane of movement.

Neuromuscular Rehabilitation in Manual and Physical Therapies
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Fig. 12.63 � Reciprocal activation and force control of trunk in the AP plane. The patient pulls and pushes against varying
levels of resistance provided by the practitioner.

Fig. 12.64 � Reciprocal activation and force control of the trunk in the lateral and rotational planes. Same procedures as in
Fig. 12.63. In this group of procedures a transition time element can be added by introducing a sudden change in the
resistance force provided by the practitioner.

C H A P T E R 1 2Motor abilities, assessment to challenge: re-abilitation
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13
Optimizing proprioceptive
recovery
The recovery of proprioceptive ability is a combi-
nation of repair and adaptation of the mechano-
receptors and their central representation as well
as the repair and adaptation of the tissues in
which the receptors are embedded (Ch. 4). These
are intrinsic process that are greatly facilitated and
optimized by active movement. All of the motor
challenges described in Chapter 12 will also stimu-
late proprioception.

However, some patients may be unable to ex-
ecute active movement and may, therefore, require
passive forms of proprioceptive stimulation. This
chapter will explore ways of assessing and facilitat-
ing proprioception recovery.
Sensory ability: assessment
and challenge

The sensory complexity model discussed in Chapter 4
can be used as a framework for assessing and stimulat-
ing proprioception. Three levels of sensory ability
were identified:

• Primary proprioceptive ability (position,
movement and effort sense)

• Spatial orientation

• Composite sensory ability.

The assessment of composite sensory ability is
outside the scope of this book; therefore, the focus
will be on proprioception (see Table 13.1 for sum-
mary of proprioceptive assessment).
Assessing position and movement
sense

All the tests described below should be done with
eyes closed (the patient!).

Position sense

This can be assessed by matching the position of the
unaffected side to the affected side. For example in
the knee, the patient sits with knees flexed at 90
degrees. The practitioner passively moves the affected
lower leg to a new angle (the subject has to completely
relax the leg). The patient has to match this position
with the unaffected leg (Fig 13.1). If only the affected
leg is available for testing, the practitioner canmove the
joint to a specific position. The patient has to remem-
ber this position and then actively recall it after the
practitioner moves the joint to a different position
(see DVD, Part 4 sensory assessment).

This assessment bypasses the sense of effort. It
might be worth trying the same test but with the
patient actively moving the affected leg to a partic-
ular position and than matching it with the un-
affected leg. This would resemble a more real-life
situation where proprioception is engaged during
active movement (to include the sense of effort).

Movement sense

The therapist moves the affected limb slowly while
the patient attempts to mirror the movement with



Table 13.1 Assessment of proprioception

Sensory abilities

Ability Description Assessment

Static

position

sense

Ability to perceive the static angle of the joint. Patient’s eyes shut, moves one limb to a particular angle/

position. Patient has to move the other limb to match the same

position.

Test in different angles (Fig. 13.1).

Dynamic

movement

sense

Ability to perceive the angle of the joint during

movement.

Patient’s eyes shut, moves one limb. Instruct patient to follow

the movement with the other limb (Fig. 13.1).

Test in different velocities.

Spatial

orientation

Ability to perceive the position of limbs or

trunk in space and direction of movement.

Instruct the patient to shut their eyes and move their limb

between two targets (Fig. 13.2).

A B

C

Fig. 13.1 � Assessing position (static) sense. A. starting position, B the leg is moved by the practitioner to a different angle and
C the patient matches that position with the opposite leg.
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the unaffected limb (same procedure as in Fig. 13.1
but the movement is more continuous, see DVD,
Part 4 sensory assessment).

If only the affected limb is available for testing,
the therapist can move the patient’s limb passively
within the movement pairs, e.g. flexion or exten-
sion. The patient has to identify in which direction
the joint is moving.
164
Spatial orientation

The patient’s eyes are closed.

Assessment

This ability can be assessed by creating two
target points: one static and the other moving.



A B

C D

Fig. 13.2 � Assessing spatial orientation. The patient moves their limb between two reference points (A&B). This challenge can
be increased by continuously moving the patient’s own reference point (head/nose) (C&D).
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For example, the dynamic target could be the
patient’s nose, and the static target point the practi-
tioner’s index finger (Fig. 13.2, see DVD, Part 4
sensory assessment). The patient is instructed to
touch these two reference points repeatedly with
their index finger. The assessment can be made
more challenging by instructing the patient to
slowly rotate their head during this procedure. Look
out for accuracy in reaching the targets and the
speed of movement. In this assessment the patient
has to build up a spatial map of the position, dis-
tances and directions of the limb in relation to the
trunk and other limbs.

Another test is to hold the patient’s unaffected
arm and move it slowly in space in different direc-
tions. At the same time the patient has to actively
follow and replicate these movements with the
affected arm.
Challenging the feedback

The challenging of proprioception is somewhat dif-
ferent to the assessment described above. The chal-
lenge can take several forms:

• Any exercise or active movement of the affected
limb

• Increasing the afferent stimulation by passive
manual approaches

• Reducing the visual feedback.

Any exercise or active movement will stimulate
proprioception. This is by far the ideal way to chal-
lenge and help proprioceptive recovery. This issue
has been discussed at length in Chapters 2 and 4.
The next options, passive stimulation and reduced
visual feedback, should be used if the patient is
unable to execute active movement. Some patients
165
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who have a limited ability to execute movement
may benefit from the alternate use of passive and
active movement.1
Manual passive approaches

Generally, passive manual techniques will stimulate
proprioception without engaging the efferent and
motor elements of the system.

Various groups of proprioceptors will be recruited
by different manual techniques.2 For example, skin
mechanoreceptors can be maximally stimulated by
dynamic events such as massage and stroking.
Maximal stimulation of joint receptors can be
achieved by articulation techniques such as cyclical
Pr
op

rio
ce

pt
io

n

Passive - static

Spindles la
Spindles II

Articular III
Skin afferents

Articular I
Articular II

Golgi tendon
organ

Passive - dyna

Soft-tissue techniques
Massage
Effleurage
Stretching
Hacking
Deep friction
Cranial
Functional
Shiatsu
Acupressure
Strain-counter-strain
Traction

Articulation
Rythmic stretching
Manipulation
Mobilization
Harmonic techniqu
Rythmic traction

Fig. 13.3 � Summary of the effects of different physic
techniques on proprioception. Shaded circles represen
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rhythmical joint movement or oscillation. Proprio-
ceptive stimulation in muscles can be achieved by
rhythmic cyclical stretching. Alternatively, the patient
can be instructed to contract isometrically while the
therapist introduces rhythmic perturbations to the
limb. Generally, active–dynamic techniques produce
the largest proprioceptive barrage; second to these
come passive–dynamic techniques. The influence of
the different techniques on proprioception is
summarized in Figure 13.3.

Passive manual proprioceptive stimulation may
have a role in sensory rehabilitation of severely dis-
abled individuals who are unable to initiate vol-
untary movement. In healthy individuals, passive
stimulation was shown to drive adaptation in the
cortical areas involved in preparation and execution
mic Active - static Active - dynamic

es

Muscle energy techniques
PNF stretching

All active movement
Functional approach
Re-abilitation
PNF
Bobath

al stimulation and the related manual-therapy
t the extent of receptor recruitment.
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of movement.3 A similar finding was demonstrated in
patients who hadmotor hemiplegia with severemotor
deficit. This study demonstrated that 4 weeks of
proprioceptive training (daily passive motion to the
affected wrist), together with standard rehabilitation,
promoted further adaptation in sensorimotor
centres.4 However, it is not clear howwell this central
topographical reorganization translates into improve-
ment in proprioception or motor control.5

Proprioception vs. vision

One way of directing attention to proprioception is
to instruct the patient to shut their eyes while exer-
cising. It was demonstrated that when subjects learn
to balance on a beam, those blindfolded had devel-
oped better balance ability than subjects who
trained with partial or full vision.6

However, when this ability has to be transferred
to another movement situation, the source of sen-
sory information during the training is not as impor-
tant as the similarity between the two tasks
(see similarity principle Ch. 5).7
Summary points

• Proprioceptive abilities can be assessed by using
the sensory complexity model.

• Proprioceptive losses following musculoskeletal
injuries can be very small and not detectable by
clinical examination.

• Active movement is more effective for
stimulation and recovery of proprioceptive losses.

• There are no specific proprioceptive exercises.
All exercise will engage the full motor system
including proprioception.

• Passive, proprioceptive manual approaches
should only be used in the severely disabled
individual with severe motor losses.

• Exclusion of vision during movement will drive
attention to proprioception.

• The message to the patient with proprioceptive
losses: “keep on moving”.
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14
Neuromuscular rehabilitation:
summary
• Neuromuscular rehabilitation aims to help the
individual to recover their movement control and
optimize their functional capacity.

• It is an inclusive approach that encompasses the
cognitive, behavioural and neurophysiological
dimensions of the individual.

• The rehabilitation promoted in this book has
three basic recurring concepts:

� It aims to be functional

� It involves skill/ability-level rehabilitation

� It uses the learning/adaptation code to
optimize motor control changes.

Functional rehabilitation

• Functional movement is the movement repertoire
of an individual.

• Movement which is out of the individual’s
experience is termed extra-functional.

• Functional rehabilitation utilizes the patient’s own
movement repertoire to help them to recover their
movement losses. It uses actions the patient is
already familiar with but can’t carry out.

• Extra-functional movement requires a period of
learning/training and is, therefore, not ideal for
individuals who are in pain or recovering from an
injury.

Skill/ability-level rehabilitation

• Neuromuscular rehabilitation can be within a
skill and/or ability level.
• Skill is how proficient a person is in performing a
particular task.

• Skill depends on practice and a mixture of the
sensory-motor and cognitive abilities of the
individual.

• Motor abilities are the various control factors that
underlie movement.

• At skill-level rehabilitation the patient simply
aims to carry out the movements they are
currently unable to complete.

• Ability-level rehabilitation (re-abilitation) focuses
on specific underlying motor losses which
prevent the person from attaining their
movement goals.

• Cognition about injury and pain, persistent pain
and fear of it, and behavioural factors, are all
manageable within skill-level rehabilitation.
The code for neuromuscular
adaptation

• Learning, retraining, motor organization to injury
and return to functionality depend on the
capacity of the motor system to adapt.

• These adaptive processes can be optimized
by introducing five principal elements:
cognition, activity, feedback, repetition and
similarity.

• Cognition involves thinking, rationalizing,
memorizing, focusing, being attentive, deciding
on actions and understanding the aims and goals
of the rehabilitation process.
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• Being physically active is important for
neuromuscular adaptation. Passive movement
approaches are unlikely to be effective in
promoting lasting and functional motor control
changes.

• Feedback can be intrinsic from proprioception or
extrinsic as guidance from the therapist.

• Repetition, repetition, repetition – practice is
very important for long-term memory.

• Rehabilitation should use movement patterns
that are similar to, and within the context of, the
movement being recovered.

• Experiences that possess a higher content of
adaptive code elements have a greater potential
for promoting long-term changes.

Motor abilities

• Motor abilities can be classified according to their
level of motor complexity: parametric, synergetic
and composite abilities.

• Parametric abilities are: force, velocity/speed/
rate, length, endurance.

• There are two identifiable synergistic control
patterns: reciprocal activation and co-contraction.

• Composite abilities are: coordination (fine,
single- and multi-limb, and body coordination),
balance/postural stability, transition time and
motor relaxation.

• Motor ability changes can be observed in
musculoskeletal injuries and pain conditions and
in patients suffering from central nervous system
(CNS) damage.

• There is evidence that motor abilities can be
normalized by activities that challenge them
specifically.
Sensory ability

• The sensory-motor system is a functional unit.

• Proprioceptive acuity can be affected due to
peripheral and/or central causes.

• Musculoskeletal injury can affect the peripheral
proprioceptive apparatus while CNS damage will
affect the central processing of proprioception.

• Recovery of proprioception comprises both
reparative and adaptive processes. As such, it
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may have its own inherent recovery period that
may take several weeks or months to complete.

• Promoting normal functional movement will help
proprioception by facilitating positive sensory-
motor reorganization/adaptation. There is no
need to specifically target proprioception.

• All exercises are proprioceptive exercises.

The motor system in
musculoskeletal injury

• The motor reorganization following injury is a
multi-dimensional strategy culminating in
postural and movement reorganization aimed at
reducing the mechanical stresses imposed on the
damaged tissues – in this text it is referred to as
the injury response.

• The injury response is a positive healthy response
and not a motor dysfunction or pathology.

• Acute musculoskeletal injuries should be left
alone – the body knows best. The patient should
be encouraged to keep active.

• Neuromuscular rehabilitation is useful when the
injury response serves no obvious protective
function. It includes:

� Conditions where the injury response has
become an adaptive state, such as in chronic
recovery from injury or surgery, or conditions
where there were movement constraints or
immobilization

� Sensitization conditions where tissue damage
has resolved but the patient still experiences
pain

� Injury-related psychological distress that leads
to “psychomotor” control losses.

• In the neurological dimension there is no injury
specific rehabilitation. A body area is
rehabilitated according to its function rather than
to the underlying pathology.

Cognition and behaviour

• Cognition, behaviour and movement control are
inseparable.

• Helping individuals to modify their injury
behaviour and challenging beliefs and attitudes
about their condition can facilitate motor
recovery.
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• Some injuries and pain conditions can be
acquired by the way the person uses their body in
relation to the physical environment (task
behaviour), or by the way in which the person
organizes and schedules their physical activities
(organizational behaviour, often overuse injuries).

• Guiding individuals in how to modify their task
and organizational behaviour could help to
prevent musculoskeletal injury and pain.

• Movement control can change solely by cognitive
means.

Non-traumatic pain conditions

• Individuals may acquire painful musculoskeletal
conditions without traumatic injury.

• Often these conditions develop in low-load,
repetitive physical activities (computer use) or in
response to psychological distress.

• These conditions oftenmanifest as pain and tender
points around the head (tension headache),
suboccipital area, neck and neck-scapular muscles
(trapezius myalgia) and jaw (bruxism).

• All these conditions share similar processes –
inability of the individual to relax, transmission of
tension via the neuromuscular system to specific
muscles.

• Intervention should be all-inclusive – a
combination of cognitive, psychosocial,
behavioural, organizational and neuromuscular
approaches.

• Focused motor relaxation should be used to train
the individual how to relax their painful muscles.

• Transferring the relaxation to functional daily
activities is important. Promote relaxation-in-
movement.

• The patient’s own coping strategies are very
important for reducing stress and chronic states
of arousal.

• Neuromucular rehabilitation is also about motor
relaxation.

Damaged central nervous
system

• Many of the principles of neuromuscular
rehabilitation can be applied to managing
individuals who suffered CNS damage.
• The rehabilitation plan should contain the motor
adaptation elements – cognition, activity,
feedback, repetition and similarity.

• Keep the training as close as possible to daily
functional movement.

• Avoid complex movements that are not within the
normal movement repertoire of the individual –
train them in something they already know (but
can’t do).

Further thoughts on motor
recovery

• Recovery of motor control is an intrinsic person/
nervous-system process.

• This recovery is dependent on psychological,
behavioural, neurophysiological and tissue-related
factors. Often many of these factors are
interrelated.

• The role of neuromuscular rehabilitation is to
optimize the recovery of movement control,
working with all these factors.

• Rehabilitation is more about facilitating
cognitive-sensory-motor processes by providing a
stimulating and variations-rich environment. It is
not just exercising.

• The movement challenges should be introduced
at a level that matches or is above the patient’s
movement capacity.

Finally

• The only clinical certainty is uncertainty – don’t
fight it, learn to work with it. You will never
know all the answers but you will be expected to
provide expert care.

• Complexity rules! Don’t become lost in the
labyrinth of the neuromuscular system; look at
the whole, not at minute details.

• Neuromuscular rehabilitation is a creative
process; it is not protocol-based. Every patient is
different and presents with new challenges. You
will forever have to problem-solve on your feet.

• Think movement not muscles.

• There is nothing like one brain to stimulate
another.

• Make it fun, interesting and continuously
challenging.
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